論文の概要: Fair Regression with Wasserstein Barycenters
- arxiv url: http://arxiv.org/abs/2006.07286v2
- Date: Tue, 23 Jun 2020 13:22:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 03:53:37.762430
- Title: Fair Regression with Wasserstein Barycenters
- Title(参考訳): Wasserstein Barycentersによる公正回帰
- Authors: Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto,
Massimiliano Pontil
- Abstract要約: 本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
- 参考スコア(独自算出の注目度): 39.818025466204055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning a real-valued function that satisfies the
Demographic Parity constraint. It demands the distribution of the predicted
output to be independent of the sensitive attribute. We consider the case that
the sensitive attribute is available for prediction. We establish a connection
between fair regression and optimal transport theory, based on which we derive
a close form expression for the optimal fair predictor. Specifically, we show
that the distribution of this optimum is the Wasserstein barycenter of the
distributions induced by the standard regression function on the sensitive
groups. This result offers an intuitive interpretation of the optimal fair
prediction and suggests a simple post-processing algorithm to achieve fairness.
We establish risk and distribution-free fairness guarantees for this procedure.
Numerical experiments indicate that our method is very effective in learning
fair models, with a relative increase in error rate that is inferior to the
relative gain in fairness.
- Abstract(参考訳): 人口統計学的パリティ制約を満たす実数値関数を学習する問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
センシティブな属性が予測に利用できる場合を考える。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
具体的には、この最適分布が感度群に対する標準回帰関数によって引き起こされる分布のwasserstein barycenterであることを示す。
この結果は最適フェア予測を直感的に解釈し、フェアネスを達成するための単純な後処理アルゴリズムを提案する。
我々はこの手順に対してリスクと分布自由公正性を保証する。
数値実験により,本手法はフェアネスの相対利得よりも低い誤差率の相対的な増加とともに,フェアモデルの学習に非常に有効であることが示された。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Conformalized Fairness via Quantile Regression [8.180169144038345]
本稿では,デモグラフィックパリティの公正性要件に基づき,実数値量子関数を学習するための新しいフレームワークを提案する。
フェア量子化法により構築された誘導予測区間に対する分布自由被覆の理論的保証と正確な公正性を確立する。
本研究は, フェアネス・正確性トレードオフの基盤となるメカニズムを, 幅広い社会的・医療的応用において明らかにする能力を示すものである。
論文 参考訳(メタデータ) (2022-10-05T04:04:15Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Costs and Benefits of Wasserstein Fair Regression [11.134279147254361]
本稿では,レグレッション・セッティングにおける統計的パリティと精度の相違点を特徴付ける。
我々の下限はシャープでアルゴリズムに依存しておらず、単純な解釈を許している。
我々は,表現学習のレンズを用いて,公正回帰のための実用的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T14:24:44Z) - Pairwise Fairness for Ordinal Regression [22.838858781036574]
我々は,以前フェアランキングで考慮されていた2つのフェアネス概念を適応させ,どちらの概念にもとづいてほぼフェアな予測者を訓練するための戦略を提案する。
我々の予測器は、スコアリング関数としきい値のセットからなるしきい値モデルから成り立っている。
提案手法は,精度-vs-fairness のトレードオフを効果的に探索することを可能にし,順序回帰の「不公平」な手法とよく比較できることを示す。
論文 参考訳(メタデータ) (2021-05-07T10:33:42Z) - Fair Densities via Boosting the Sufficient Statistics of Exponential
Families [72.34223801798422]
フェアネスのためのデータ前処理にブースティングアルゴリズムを導入する。
私たちのアプローチは、最小限の公平性を確保しながら、より良いデータフィッティングへとシフトします。
実世界のデータに結果の質を示す実験結果が提示される。
論文 参考訳(メタデータ) (2020-12-01T00:49:17Z) - A Distributionally Robust Approach to Fair Classification [17.759493152879013]
本研究では、性別や民族などのセンシティブな属性に対する差別を防止する不公平なペナルティを持つロジスティックなロジスティック回帰モデルを提案する。
このモデルは、トレーニングデータ上の経験的分布を中心とするワッサーシュタイン球が分布の不確かさのモデル化に使用される場合、トラクタブル凸最適化問題と等価である。
得られた分類器は, 合成データセットと実データセットの両方において, 予測精度の限界損失による公平性の向上を実証する。
論文 参考訳(メタデータ) (2020-07-18T22:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。