Quantum-enhanced SU(1,1) interferometry via a Fock state
- URL: http://arxiv.org/abs/2105.03820v1
- Date: Sun, 9 May 2021 03:19:58 GMT
- Title: Quantum-enhanced SU(1,1) interferometry via a Fock state
- Authors: Shuai Wang, Jian-Dong Zhang and Xue-Xiang Xu
- Abstract summary: We show that the same quantum Fisher information can be obtained regardless of the specific form of the arbitrary state.
A Fock state can indeed enhance the phase sensitivity within a constraint on the total mean photon number inside the interferometer.
- Score: 4.3088765180139585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we derive a general expression of the quantum Fisher
information of an SU(1,1) interferometer with an arbitrary state and a Fock
state as inputs by the phase-averaging method. Our results show that the same
quantum Fisher information can be obtained regardless of the specific form of
the arbitrary state. Then, we analytically prove that the parity measurement
can saturate the quantum Cramer-Rao bound when the estimated phase sits at the
optimal working point. For practical reasons, we investigate the phase
sensitivity when the arbitrary state is a coherent or thermal state. We further
show that a Fock state can indeed enhance the phase sensitivity within a
constraint on the total mean photon number inside the interferometer.
Related papers
- Towards the Quantum Limits of Phase Retrieval [0.276240219662896]
We consider the problem of determining the spatial phase profile of a single-mode electromagnetic field.
We derive the quantum Fisher information matrix (QFIM) for estimating the expansion coefficients of the wavefront.
We then construct the optimal measurements for three particular states.
arXiv Detail & Related papers (2024-07-07T05:38:06Z) - Enhancement in phase sensitivity of SU(1,1) interferometer with Kerr state seeding [1.9437125389135004]
We study the phase sensitivity of SU(1,1) interferometer with Kerr state seeding under single intensity and homodyne detection schemes.
We expect that the Kerr state might act as an alternative non-classical state in the field of quantum information and sensing technologies.
arXiv Detail & Related papers (2024-04-03T12:18:07Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Two-parameter estimation with single squeezed-light interferometer via
double homodyne detection [4.940388670472376]
An analytical form of the quantum Cramer-Bao bound defined by the quantum Fisher information matrix is presented.
It can not only surpass the shot-noise limit, but also can surpass the Heisenberg limit when half of the input intensity of the interferometer is provided by the coherent state.
arXiv Detail & Related papers (2023-10-13T04:55:42Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Quantum Thermometry with a Dissipative Quantum Rabi System [1.430924337853801]
A finite-component system composed of a single two-level atom interacting with an optical cavity field mode exhibits a quantum phase transition.
We investigate the quantum thermometry of a thermal bath surrounding the atom with quantum optical probes.
arXiv Detail & Related papers (2021-05-27T01:47:57Z) - Quantum-enhanced stochastic phase estimation with SU(1,1) interferometer [3.0440082886830475]
There is a standard quantum limit for phase estimation, which can be obtained with the Mach-Zehnder interferometer and coherent input state.
Here, we show that the method with the SU (1,1) interferometer can achieve the fundamental quantum scaling, surpass the Heisenberg scaling, and surpass the canonical measurement.
arXiv Detail & Related papers (2020-08-07T03:03:36Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.