論文の概要: Exploiting Path Information for Anchor Based Graph Neural Network
- arxiv url: http://arxiv.org/abs/2105.03821v1
- Date: Sun, 9 May 2021 03:25:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 15:18:52.668563
- Title: Exploiting Path Information for Anchor Based Graph Neural Network
- Title(参考訳): アンカー型グラフニューラルネットワークにおける経路情報の利用
- Authors: Yuheng Lu, ChuXiong Sun, Jie Hu
- Abstract要約: グラフ推論表現(GIR)は、各ノードのアンカーに関連するアンカーベースのGNNエンコーディングパス情報です。
位置認識埋め込みを得る能力は理論的および実験的に調査される。
我々は、GIRが位置認識のシナリオよりも優れており、GIRを埋め込むことで、GNNの結果を改善することができることを示した。
- 参考スコア(独自算出の注目度): 6.596616445549957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning node representation that incorporating information from graph
structure benefits wide range of tasks on graph. Majority of existing graph
neural networks (GNNs) have limited power in capturing position information for
a given node. The idea of positioning nodes with selected anchors has been
exploit, yet mainly rely on explicit labeling of distance information. Here we
propose Graph Inference Representation (GIR), an anchor based GNN encoding path
information related to anchors for each node. Abilities to get position-aware
embedding are theoretically and experimentally investigated on GIRs and its
core variants. Further, the complementary characteristic of GIRs and typical
GNNs embeddings are demonstrated. We show that GIRs get outperformed results on
position-aware scenario, and could improve GNNs results by fuse GIRs embedding.
- Abstract(参考訳): グラフ構造から情報を取り込むノード表現の学習は、グラフ上の幅広いタスクに役立つ。
既存のグラフニューラルネットワーク(GNN)の大部分は、特定のノードの位置情報をキャプチャする能力に制限がある。
選択されたアンカーを持つノードの位置決めは、主に距離情報の明示的なラベル付けに依存している。
本稿では、各ノードのアンカーに関連する経路情報をエンコードするアンカーベースGNNであるグラフ推論表現(GIR)を提案する。
位置認識の埋め込み能力は、GIRとそのコアバリアントに対して理論的および実験的に研究されている。
さらに、GIRと典型的なGNNの埋め込みの相補的特性を示す。
我々は、GIRが位置認識のシナリオよりも優れており、GIRを埋め込むことで、GNNの結果を改善することができることを示した。
関連論文リスト
- DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - Structure Enhanced Graph Neural Networks for Link Prediction [6.872826041648584]
リンク予測のための構造拡張グラフニューラルネットワーク(SEG)を提案する。
SEGは、ターゲットノードの周囲の位相情報を通常のGNNモデルに組み込む。
OGBリンク予測データセットの実験は、SEGが最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2022-01-14T03:49:30Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
グラフニューラルネットワーク(GNN)は、ディープニューラルネットワークをグラフ構造化データに一般化する。
GNNには説明責任がないため、モデルの透明性を求めるシナリオでは採用が制限される。
そこで本稿では,各未ラベルノードに対して$K$-nearestラベル付きノードを探索し,説明可能なノード分類を提案する。
論文 参考訳(メタデータ) (2021-08-26T22:45:11Z) - Position-Sensing Graph Neural Networks: Proactively Learning Nodes
Relative Positions [26.926733376090052]
既存のグラフニューラルネットワーク(GNN)は、メッセージパッシングとアグリゲーションのフレームワークを使用してノードの埋め込みを学習する。
本稿では,位置検出型グラフニューラルネットワーク(PSGNN)を提案する。
PSGNNs on average boost AUC more than 14% for pairwise node classification and 18% for link prediction。
論文 参考訳(メタデータ) (2021-05-24T15:30:30Z) - Graph Attention Networks with Positional Embeddings [7.552100672006174]
グラフニューラルネットワーク(GNN)は、ノード分類タスクにおける芸術的パフォーマンスの現在の状態を提供するディープラーニング手法である。
本論文では,GATを位置埋め込みで強化するフレームワークであるG Graph Attentional Networks with Positional Embeddings(GAT-POS)を提案する。
GAT-POSは、強いGNNベースラインや、非ホモフィルグラフ上の最近の構造埋め込み強化GNNと比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-05-09T22:13:46Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
グラフニューラルネットワーク(GNN)は、グラフでサポートされている信号のための情報処理アーキテクチャである。
これらは、個々の層がグラフ畳み込みフィルタのバンクを含む畳み込みニューラルネットワーク(CNN)の一般化である。
論文 参考訳(メタデータ) (2020-08-04T18:57:36Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。