Aggregating From Multiple Target-Shifted Sources
- URL: http://arxiv.org/abs/2105.04051v1
- Date: Sun, 9 May 2021 23:25:29 GMT
- Title: Aggregating From Multiple Target-Shifted Sources
- Authors: Changjian Shui, Zijian Li, Jiaqi Li, Christian Gagn\'e, Charles Ling,
Boyu Wang
- Abstract summary: Multi-source domain adaptation aims at leveraging the knowledge from multiple tasks for predicting a related target domain.
In this paper, we analyzed the problem for aggregating source domains with different label distributions, where most recent source selection approaches fail.
Our proposed algorithm differs from previous approaches in two key ways: the model aggregates multiple sources mainly through the similarity of semantic conditional distribution rather than marginal distribution.
- Score: 7.644958631142882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-source domain adaptation aims at leveraging the knowledge from multiple
tasks for predicting a related target domain. Hence, a crucial aspect is to
properly combine different sources based on their relations. In this paper, we
analyzed the problem for aggregating source domains with different label
distributions, where most recent source selection approaches fail. Our proposed
algorithm differs from previous approaches in two key ways: the model
aggregates multiple sources mainly through the similarity of semantic
conditional distribution rather than marginal distribution; the model proposes
a \emph{unified} framework to select relevant sources for three popular
scenarios, i.e., domain adaptation with limited label on target domain,
unsupervised domain adaptation and label partial unsupervised domain adaption.
We evaluate the proposed method through extensive experiments. The empirical
results significantly outperform the baselines.
Related papers
- Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Multi-Source domain adaptation via supervised contrastive learning and
confident consistency regularization [0.0]
Multi-Source Unsupervised Domain Adaptation (multi-source UDA) aims to learn a model from several labeled source domains.
We propose Contrastive Multi-Source Domain Adaptation (CMSDA) for multi-source UDA that addresses this limitation.
arXiv Detail & Related papers (2021-06-30T14:39:15Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
We propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN)
DMSN can simultaneously enhance domain innative and preserve discriminative power.
We develop a novel pseudo learning algorithm to approximate optimal parameters of pseudo target subset.
arXiv Detail & Related papers (2021-06-30T03:17:20Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Discriminative Cross-Domain Feature Learning for Partial Domain
Adaptation [70.45936509510528]
Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes.
Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain.
It is essential to align target data with only a small set of source data.
arXiv Detail & Related papers (2020-08-26T03:18:53Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Multi-source Attention for Unsupervised Domain Adaptation [15.900069711477542]
We model source-selection as an attention-learning problem, where we learn attention over sources for a given target instance.
For this purpose, we first independently learn source-specific classification models, and a relatedness map between sources and target domains.
We then learn attention-weights over the sources for aggregating the predictions of the source-specific models.
arXiv Detail & Related papers (2020-04-14T15:51:02Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
We propose a novel multi-source domain adaptation method, Mutual Learning Network for Multiple Source Domain Adaptation (ML-MSDA)
Under the framework of mutual learning, the proposed method pairs the target domain with each single source domain to train a conditional adversarial domain adaptation network as a branch network.
The proposed method outperforms the comparison methods and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2020-03-29T04:31:43Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
We propose a novel multi-source domain adaptation (MDA) method, termed Multi-source Sentiment Generative Adversarial Network (MSGAN)
To handle data from multiple source domains, MSGAN learns to find a unified sentiment latent space where data from both the source and target domains share a similar distribution.
Extensive experiments conducted on four benchmark datasets demonstrate that MSGAN significantly outperforms the state-of-the-art MDA approaches for visual sentiment classification.
arXiv Detail & Related papers (2020-01-12T08:37:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.