論文の概要: Latency Analysis of Consortium Blockchained Federated Learning
- arxiv url: http://arxiv.org/abs/2105.04087v1
- Date: Mon, 10 May 2021 03:14:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 01:20:11.466425
- Title: Latency Analysis of Consortium Blockchained Federated Learning
- Title(参考訳): コンソーシアムブロックチェーン連合学習のレイテンシ解析
- Authors: Pengcheng Ren and Tongjiang Yan
- Abstract要約: 参加者が訓練したローカルモデルの品質を保証するためのモデル検証機構を提案する。
システムのレイテンシを分析するために,アーキテクチャの作業フローを考慮した遅延モデルを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A decentralized federated learning architecture is proposed to apply to the
Businesses-to-Businesses scenarios by introducing the consortium blockchain in
this paper. We introduce a model verification mechanism to ensure the quality
of local models trained by participators. To analyze the latency of the system,
a latency model is constructed by considering the work flow of the
architecture. Finally the experiment results show that our latency model does
well in quantifying the actual delays.
- Abstract(参考訳): 本稿では,このコンソーシアムブロックチェーンを導入して,ビジネスとビジネスのシナリオに適用するための分散型フェデレーション学習アーキテクチャを提案する。
参加者が訓練したローカルモデルの品質を保証するためのモデル検証機構を提案する。
システムのレイテンシを分析するために,アーキテクチャの作業フローを考慮した遅延モデルを構築した。
最後に、実験結果から、遅延モデルは実際の遅延の定量化に有効であることが示された。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Proof Flow: Preliminary Study on Generative Flow Network Language Model Tuning for Formal Reasoning [11.268313729426627]
本稿では,形式的推論の領域,特にニューラル定理証明設定における概念実証について述べる。
古典的な報酬最大化強化学習とは異なり、GFlowNetsは合成対象をサンプリングするための有望なアプローチとして登場した。
我々の初期の結果は、GFlowNetが検索環境におけるモデル性能を向上させる可能性を示している。
論文 参考訳(メタデータ) (2024-10-17T05:10:12Z) - Queuing dynamics of asynchronous Federated Learning [15.26212962081762]
計算速度の異なるノードを用いた非同期フェデレーション学習機構について検討する。
本稿では、より複雑な遅延を低減できる中央サーバのための一様でないサンプリング方式を提案する。
画像分類問題に対する現状の非同期アルゴリズムよりも,提案手法の大幅な改善が明らかとなった。
論文 参考訳(メタデータ) (2024-02-12T18:32:35Z) - A Blockchain-based Platform for Reliable Inference and Training of
Large-Scale Models [1.323497585762675]
我々は、大規模モデルの信頼性の高い推論とトレーニングを保証するために特別に設計された、新しいプラットフォームであるBRAINを紹介する。
BRAINはユニークな2フェーズトランザクション機構を利用し、パイプライニングによるリアルタイム処理を可能にする。
BRAINは、合理的なガス料金でかなり高い推論スループットを提供する。
論文 参考訳(メタデータ) (2023-05-06T14:21:41Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
フェデレーションエッジインテリジェンス(FEI)システムにおけるリアルタイム機械学習について検討する。
FEIシステムは異種通信と計算資源分布を示す。
本稿では,共有MLモデルの協調学習における全体の実行時間を最小化するために,時間依存型フェデレーションラーニング(TS-FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-01-26T08:13:22Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning(FL)は、デバイス上でのトレーニングとサーバベースのアグリゲーションを組み合わせた、協調的な機械学習フレームワークである。
FLシステムにおけるストラグラー問題に対処するために,周期的アグリゲーションを用いた非同期FL設計を提案する。
年齢認識の集約重み付け設計は,非同期FL設定における学習性能を著しく向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-14T17:33:01Z) - Gated Recurrent Neural Networks with Weighted Time-Delay Feedback [59.125047512495456]
重み付き時間遅延フィードバック機構を備えた新しいゲートリカレントユニット(GRU)を導入する。
我々は、$tau$-GRUが、最先端のリカレントユニットやゲート型リカレントアーキテクチャよりも早く収束し、より一般化できることを示します。
論文 参考訳(メタデータ) (2022-12-01T02:26:34Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Federated Learning with Communication Delay in Edge Networks [5.500965885412937]
フェデレーション学習は、エッジネットワークを通じて機械学習(ML)モデルのトレーニングを分散する潜在的なソリューションとして、大きな注目を集めている。
この研究は、エッジノードとアグリゲータ間の通信遅延という、ネットワークエッジにおけるフェデレーション学習の重要な考慮事項に対処する。
FedDelAvg(フェデレート遅延平均化)と呼ばれる手法が開発され、標準フェデレーション平均化アルゴリズムを一般化し、同期ステップ中に各デバイスで受信した現在のローカルモデルと遅延グローバルモデルとの重み付けを組み込む。
論文 参考訳(メタデータ) (2020-08-21T06:21:35Z) - Causal Modeling with Stochastic Confounders [11.881081802491183]
この作業は、共同設立者との因果推論を拡張します。
本稿では,ランダムな入力空間を持つ表現子定理に基づく因果推論のための変分推定手法を提案する。
論文 参考訳(メタデータ) (2020-04-24T00:34:44Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。