Multimode Metrology via Scattershot Sampling
- URL: http://arxiv.org/abs/2105.04135v2
- Date: Wed, 18 Aug 2021 01:11:48 GMT
- Title: Multimode Metrology via Scattershot Sampling
- Authors: Joshua J. Guanzon, Austin P. Lund, Timothy C. Ralph
- Abstract summary: We introduce three different scalable multimode interferometers to quantify quantum Fisher information performance.
We prove all three interferometers gives the same amount of information on average, which can be shown to beat the classical precision limit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scattershot photon sources are known to have useful properties for optical
quantum computing and boson sampling purposes, in particular for scaling to
large numbers of photons. This paper investigates the application of these
scattershot sources towards the metrological task of estimating an unknown
phase shift. In this regard, we introduce three different scalable multimode
interferometers, and quantify their quantum Fisher information performance
using scattershot sources with arbitrary system sizes. We show that two of the
interferometers need the probing photons to be in certain input configurations
to beat the classical shot-noise precision limit, while the remaining
interferometer has the necessary symmetry which allows it to always beat the
classical limit no matter the input configuration. However, we can prove all
three interferometers gives the same amount of information on average, which
can be shown to beat the classical precision limit. We also perform Monte Carlo
simulations to compare the interferometers in different experimentally relevant
regimes, as a function of the number of samples.
Related papers
- Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Classification of quantum states of light using random measurements
through a multimode fiber [42.5342379899288]
We present an optical scheme based on sending unknown input states through a multimode fiber.
A short multimode fiber implements effectively a random projection in the spatial domain.
A long-dispersive multimode fiber performs a spatial and spectral projection.
arXiv Detail & Related papers (2023-10-20T15:48:06Z) - Singular Spectrum Analysis of Two Photon Interference from Distinct
Quantum Emitters [0.0]
Time trace of quantum interference pattern of two photons from two independent solid-state emitters is preprocessed by means of singular spectral analysis.
This approach allows to single out the relevant oscillations from both the envelope and the noise, without resorting to fitting.
arXiv Detail & Related papers (2022-12-01T22:04:05Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Two-colour spectrally multimode integrated SU(1,1) interferometer [77.34726150561087]
We develop and investigate an integrated multimode two-colour SU (1,1) interferometer that operates in a supersensitive mode.
By ensuring a proper design of the integrated platform, we suppress dispersion and thereby significantly increase the visibility of the interference pattern.
We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to $3*104$ photons are generated.
arXiv Detail & Related papers (2022-02-10T13:30:42Z) - Two-Photon Interference of Single Photons from Dissimilar Sources [0.0]
Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
arXiv Detail & Related papers (2022-02-10T07:51:27Z) - Quantifying n-photon indistinguishability with a cyclic integrated
interferometer [40.24757332810004]
We report on a universal method to measure the genuine indistinguishability of n-photons.
Our approach relies on a low-depth cyclic multiport interferometer with N = 2n modes.
We experimentally demonstrate this technique for a 8-mode integrated interferometer fabricated using femtosecond laser micromachining.
arXiv Detail & Related papers (2022-01-31T16:30:52Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z) - Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source [0.0]
We simulate an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion.
With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance.
Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors.
arXiv Detail & Related papers (2020-07-31T04:26:53Z) - Boson sampling with random numbers of photons [0.0]
We show a novel boson sampling scheme where the probability of success increases instead of decreasing.
This is achieved by sampling at the same time in the number of occupied input ports and the number of input photons per port.
arXiv Detail & Related papers (2020-06-05T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.