Singular Spectrum Analysis of Two Photon Interference from Distinct
Quantum Emitters
- URL: http://arxiv.org/abs/2212.00889v2
- Date: Fri, 2 Jun 2023 17:58:39 GMT
- Title: Singular Spectrum Analysis of Two Photon Interference from Distinct
Quantum Emitters
- Authors: Rocco Duquennoy, Maja Colautti, Pietro Lombardi, Vincenzo Berardi,
Ilaria Gianani, Costanza Toninelli, and Marco Barbieri
- Abstract summary: Time trace of quantum interference pattern of two photons from two independent solid-state emitters is preprocessed by means of singular spectral analysis.
This approach allows to single out the relevant oscillations from both the envelope and the noise, without resorting to fitting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-photon interference underlies the functioning of many quantum photonics
devices. It also serves as the prominent tool for testing the
indistinguishability of distinct photons. However, as their time-spectral
profile becomes more involved, extracting relevant parameters, foremost the
central frequency difference, may start suffering difficulties. In a parametric
approach, these arise from the need for an exhaustive model combined with
limited count statistics. Here we discuss a solution to curtail these effects
on the evaluation of frequency separation relying on a semiparametric method.
The time trace of the quantum interference pattern of two photons from two
independent solid-state emitters is preprocessed by means of singular spectral
analysis before inspecting its spectral content. This approach allows to single
out the relevant oscillations from both the envelope and the noise, without
resorting to fitting. This opens the way for robust and efficient on-line
monitoring of quantum emitters.
Related papers
- Photonic quantum information processing using the frequency continuous-variable of single photons [0.0]
We show that the richness of two-photon interferometry extends to the realm of time-frequency interferometry.
We introduce an interferometric strategy using a frequency engineered two-photon state allowing to reach Heisenberg scaling for phase estimation.
arXiv Detail & Related papers (2024-02-10T14:31:22Z) - Quantum advantage of time-reversed ancilla-based metrology of absorption
parameters [2.5499055723658097]
We consider the important problem of estimation of transmission of light by a sample, with losses due to absorption and scattering.
We show, through the determination of the quantum Fisher information, that the ancilla strategy leads to the best possible precision in single-mode estimation.
arXiv Detail & Related papers (2023-10-09T20:41:53Z) - An Easier-To-Align Hong-Ou-Mandel Interference Demonstration [0.0]
Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical interference.
Experiment involves the interference of two photons reaching a symmetric beamsplitter.
arXiv Detail & Related papers (2023-01-17T20:12:03Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Two-Photon Interference of Single Photons from Dissimilar Sources [0.0]
Entanglement swapping and heralding are at the heart of many protocols for distributed quantum information.
We develop a theoretical description of pulsed two-photon interference of photons from dissimilar sources.
We study their dependence on critical system parameters such as quantum state lifetime and frequency detuning.
arXiv Detail & Related papers (2022-02-10T07:51:27Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Spectrally-resolved four-photon interference of time-frequency entangled
photons [0.0]
We analyze the behavior of phase-insensitive spectrally-resolved interferences arising from two pairs of time-frequency entangled photons.
Our analysis is a thorough exploration of what can be achieved using time-frequency entanglement and spectrally-resolved Bell-state measurements.
arXiv Detail & Related papers (2021-04-12T17:25:07Z) - Symmetry allows for distinguishability in totally destructive
many-particle interference [52.77024349608834]
We investigate, in a four photon interference experiment in a laser-written waveguide structure, how symmetries control the suppression of many-body output events of a $J_x$ unitary.
We show that totally destructive interference does not require mutual indistinguishability between all, but only between symmetrically paired particles.
arXiv Detail & Related papers (2021-02-19T16:37:19Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.