論文の概要: Robust Graph Learning Under Wasserstein Uncertainty
- arxiv url: http://arxiv.org/abs/2105.04210v1
- Date: Mon, 10 May 2021 09:09:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 14:29:58.571681
- Title: Robust Graph Learning Under Wasserstein Uncertainty
- Title(参考訳): Wassersteinの不確かさ下でのロバストグラフ学習
- Authors: Xiang Zhang, Yinfei Xu, Qinghe Liu, Zhicheng Liu, Jian Lu and Qiao
Wang
- Abstract要約: 多くのシナリオでは、信号を表す正確なグラフ構造は全く利用できない。
We propose a graph learning framework using Wasserstein distributionally robust optimization (WDRO)。
我々は,不確実性の文脈で信頼性のあるグラフを学習できることを示す。
- 参考スコア(独自算出の注目度): 35.85333465732067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are playing a crucial role in different fields since they are powerful
tools to unveil intrinsic relationships among signals. In many scenarios, an
accurate graph structure representing signals is not available at all and that
motivates people to learn a reliable graph structure directly from observed
signals. However, in real life, it is inevitable that there exists uncertainty
in the observed signals due to noise measurements or limited observability,
which causes a reduction in reliability of the learned graph. To this end, we
propose a graph learning framework using Wasserstein distributionally robust
optimization (WDRO) which handles uncertainty in data by defining an
uncertainty set on distributions of the observed data. Specifically, two models
are developed, one of which assumes all distributions in uncertainty set are
Gaussian distributions and the other one has no prior distributional
assumption. Instead of using interior point method directly, we propose two
algorithms to solve the corresponding models and show that our algorithms are
more time-saving. In addition, we also reformulate both two models into
Semi-Definite Programming (SDP), and illustrate that they are intractable in
the scenario of large-scale graph. Experiments on both synthetic and real world
data are carried out to validate the proposed framework, which show that our
scheme can learn a reliable graph in the context of uncertainty.
- Abstract(参考訳): グラフは信号間の内在的な関係を明らかにする強力なツールであるため、さまざまな分野で重要な役割を果たす。
多くのシナリオでは、信号を表す正確なグラフ構造は全く利用できず、観察した信号から直接信頼できるグラフ構造を学ぶ動機となる。
しかし,実生活では,ノイズ測定や観測可能性の制限により観測信号に不確実性が存在することが避けられないため,学習グラフの信頼性が低下する。
そこで本研究では,wasserstein distributionally robust optimization (wdro) を用いたグラフ学習フレームワークを提案する。
具体的には、2つのモデルが開発され、1つは不確かさ集合のすべての分布がガウス分布であると仮定し、もう1つは事前分布仮定を持たない。
インテリアポイント法を直接使用する代わりに,対応するモデルを解くための2つのアルゴリズムを提案し,アルゴリズムがより時間節約されていることを示す。
さらに,2つのモデルをSDP(Semi-Definite Programming)に再構成し,大規模グラフのシナリオにおいてそれらが難解であることを示す。
提案手法が不確実性の文脈で信頼性のあるグラフを学習できることを実証するために, 合成データと実世界のデータの両方を用いて実験を行った。
関連論文リスト
- Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
グラフニューラルネットワーク(GNN)は、モデル精度を高めるために帰納バイアスとしてリレーショナル情報を使用する。
課題関連関係が不明なため,下流予測タスクを解きながら学習するためのグラフ構造学習手法が提案されている。
論文 参考訳(メタデータ) (2024-05-30T10:49:22Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。