A Fixed-Point Approach for Causal Generative Modeling
- URL: http://arxiv.org/abs/2404.06969v3
- Date: Fri, 13 Dec 2024 13:56:04 GMT
- Title: A Fixed-Point Approach for Causal Generative Modeling
- Authors: Meyer Scetbon, Joel Jennings, Agrin Hilmkil, Cheng Zhang, Chao Ma,
- Abstract summary: We propose a novel formalism for describing Structural Causal Models (SCMs) as fixed-point problems on causally ordered variables.
We establish the weakest known conditions for their unique recovery given the topological ordering (TO)
- Score: 20.88890689294816
- License:
- Abstract: We propose a novel formalism for describing Structural Causal Models (SCMs) as fixed-point problems on causally ordered variables, eliminating the need for Directed Acyclic Graphs (DAGs), and establish the weakest known conditions for their unique recovery given the topological ordering (TO). Based on this, we design a two-stage causal generative model that first infers in a zero-shot manner a valid TO from observations, and then learns the generative SCM on the ordered variables. To infer TOs, we propose to amortize the learning of TOs on synthetically generated datasets by sequentially predicting the leaves of graphs seen during training. To learn SCMs, we design a transformer-based architecture that exploits a new attention mechanism enabling the modeling of causal structures, and show that this parameterization is consistent with our formalism. Finally, we conduct an extensive evaluation of each method individually, and show that when combined, our model outperforms various baselines on generated out-of-distribution problems. The code is available on \href{https://github.com/microsoft/causica/tree/main/research_experiments/fip}{Github}.
Related papers
- Generative Flow Networks: Theory and Applications to Structure Learning [7.6872614776094]
This thesis studies the problem of structure learning from a Bayesian perspective.
It introduces Generative Flow Networks (GFlowNets)
GFlowNets treat generation as a sequential decision making problem.
arXiv Detail & Related papers (2025-01-09T17:47:17Z) - Learning Structural Causal Models from Ordering: Identifiable Flow Models [19.99352354910655]
We introduce a set of flow models that can recover component-wise, invertible transformation of variables.
We propose design improvements that enable simultaneous learning of all causal mechanisms.
Our method achieves a significant reduction in computational time compared to existing diffusion-based techniques.
arXiv Detail & Related papers (2024-12-13T04:25:56Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Supervised structure learning [41.35046208072566]
It focuses on Bayesian model selection and the assimilation of training data or content, with a special emphasis on the order in which data are ingested.
A key move - in the ensuing schemes - is to place priors on the selection of models, based upon expected free energy.
The resulting scheme is first used to perform image classification on the MNIST dataset to illustrate the basic idea, and then tested on a more challenging problem of discovering models with dynamics.
arXiv Detail & Related papers (2023-11-17T03:18:55Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes [51.84122462615402]
We introduce a novel method to learn the structure and mechanisms of the causal model using Variational Bayes-DAG-GFlowNet.
We extend the method of Bayesian causal structure learning using GFlowNets to learn the parameters of a linear-Gaussian model.
arXiv Detail & Related papers (2022-11-04T21:57:39Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Surrogate Modeling for Physical Systems with Preserved Properties and
Adjustable Tradeoffs [0.0]
We present a model-based and a data-driven strategy to generate surrogate models.
The latter generates interpretable surrogate models by fitting artificial relations to a presupposed topological structure.
Our framework is compatible with various spatial discretization schemes for distributed parameter models.
arXiv Detail & Related papers (2022-02-02T17:07:02Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.