論文の概要: Task-related self-supervised learning for remote sensing image change
detection
- arxiv url: http://arxiv.org/abs/2105.04951v1
- Date: Tue, 11 May 2021 11:44:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 13:48:38.947459
- Title: Task-related self-supervised learning for remote sensing image change
detection
- Title(参考訳): リモートセンシング画像変化検出のためのタスク関連自己教師付き学習
- Authors: Zhinan Cai, Zhiyu Jiang, Yuan Yuan
- Abstract要約: リモートセンシング画像の変更検出は,都市変化の検出,災害評価,その他の分野に広く適用されている。
既存のCNNベースの変更検出手法の多くは、まだ不十分な擬似変化抑制と不十分な特徴表現の問題に悩まされている。
本研究では,タスク関連自己監視学習変化検出ネットワークに基づく,スムーズなメカニズムによる教師なし変化検出手法を提案する。
- 参考スコア(独自算出の注目度): 8.831857715361624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection for remote sensing images is widely applied for urban change
detection, disaster assessment and other fields. However, most of the existing
CNN-based change detection methods still suffer from the problem of inadequate
pseudo-changes suppression and insufficient feature representation. In this
work, an unsupervised change detection method based on Task-related
Self-supervised Learning Change Detection network with smooth mechanism(TSLCD)
is proposed to eliminate it. The main contributions include: (1) the
task-related self-supervised learning module is introduced to extract spatial
features more effectively. (2) a hard-sample-mining loss function is applied to
pay more attention to the hard-to-classify samples. (3) a smooth mechanism is
utilized to remove some of pseudo-changes and noise. Experiments on four remote
sensing change detection datasets reveal that the proposed TSLCD method
achieves the state-of-the-art for change detection task.
- Abstract(参考訳): リモートセンシング画像の変更検出は,都市変化の検出,災害評価,その他の分野に広く適用されている。
しかしながら、既存のcnnベースの変更検出手法のほとんどは、依然として不適切な擬似変更抑制と不十分な特徴表現の問題に苦しんでいる。
本研究では、スムーズな機構を持つタスク関連自己教師型学習変化検出ネットワーク(TSLCD)に基づく教師なし変更検出手法を提案する。
1)空間的特徴をより効果的に抽出するために,タスク関連自己教師付き学習モジュールが導入された。
2) ハードサンプルマイニング損失関数を適用して, 分類しにくい試料に注意を向けた。
3)疑似変化やノイズを取り除くために滑らかなメカニズムが利用される。
4つのリモートセンシング変化検出データセットの実験により,提案手法が変化検出タスクの最先端を実現することが明らかになった。
関連論文リスト
- Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection [82.65760006883248]
我々は,CDQAG (Change Detection Question Answering and Grounding) という新しいタスクを導入する。
CDQAGは、解釈可能なテキスト回答と直感的な視覚的証拠を提供することで、従来の変更検出タスクを拡張している。
QAG-360Kと呼ばれる最初のCDQAGベンチマークデータセットを構築し、360K以上の質問、テキスト回答、およびそれに対応する高品質な視覚マスクを含む。
論文 参考訳(メタデータ) (2024-10-31T11:20:13Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - Novel Change Detection Framework in Remote Sensing Imagery Using Diffusion Models and Structural Similarity Index (SSIM) [0.0]
変化検出はリモートセンシングにおいて重要な課題であり、環境変化、都市の成長、災害影響のモニタリングを可能にする。
近年の機械学習、特に拡散モデルのような生成モデルの発展は、変化検出精度を高める新たな機会を提供する。
本稿では,安定拡散モデルの強度と構造類似度指数(SSIM)を組み合わせ,頑健で解釈可能な変化マップを作成する新しい変化検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T07:54:08Z) - MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential
Deepfake Detection [81.59191603867586]
シークエンシャルディープフェイク検出は、回復のための正しいシーケンスで偽の顔領域を特定することを目的としている。
偽画像の復元には、逆変換を実装するための操作モデルの知識が必要である。
顔画像の空間スケールや逐次順列化を扱うマルチコラボレーション・マルチスーパービジョンネットワーク(MMNet)を提案する。
論文 参考訳(メタデータ) (2023-07-06T02:32:08Z) - Change Detection Methods for Remote Sensing in the Last Decade: A
Comprehensive Review [45.78958623050146]
変更検出はリモートセンシングにおいて必須かつ広く利用されるタスクである。
時間とともに同じ地理的領域で起きている変化を検出し、分析することを目的としている。
ディープラーニングは、これらの課題を抽出し対処するための強力なツールとして登場した。
論文 参考訳(メタデータ) (2023-05-09T23:52:37Z) - EMS-Net: Efficient Multi-Temporal Self-Attention For Hyperspectral
Change Detection [32.23764287942984]
我々は,高スペクトル変化検出のための高効率多時間自己アテンションネットワーク(EMS-Net)を提案している。
EMS-Netは、類似した非変更機能マップの冗長性を削減し、正確なバイナリ変更マップのための効率的なマルチテンポラリ変更情報を計算する。
2つのハイパースペクトル変化検出データセットに実装された実験は、提案手法の優れた性能と妥当性を示す。
論文 参考訳(メタデータ) (2023-03-24T02:11:22Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - Deep learning approaches to Earth Observation change detection [0.0]
本稿では,畳み込みニューラルネットワークを利用して良好な結果を得る,変化検出(セマンティックセグメンテーションと分類)の2つのアプローチを提案する。
本稿では,畳み込みニューラルネットワークを利用して良好な結果を得る,変化検出(セマンティックセグメンテーションと分類)のための2つのアプローチを提案する。
論文 参考訳(メタデータ) (2021-07-13T14:34:59Z) - DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images [17.839181739760676]
研究の目的は、関心の変化情報を識別し、無関係な変更情報を干渉要因としてフィルタリングすることである。
近年、ディープラーニングの台頭により、変化検出のための新しいツールが提供され、目覚ましい結果が得られた。
我々は,高解像度画像における変化検出のための新しい手法,すなわち,二重注意型完全畳み込みシームズネットワーク(DASNet)を提案する。
論文 参考訳(メタデータ) (2020-03-07T16:57:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。