Graph Theory for Metro Traffic Modelling
- URL: http://arxiv.org/abs/2105.04991v1
- Date: Tue, 11 May 2021 12:52:52 GMT
- Title: Graph Theory for Metro Traffic Modelling
- Authors: Bruno Scalzo Dees, Yao Lei Xu, Anthony G. Constantinides, Danilo P.
Mandic
- Abstract summary: We introduce a basic graph framework for the modelling of the London underground system from a diffusion law point of view.
We then introduce models for processing data on such a metro graph.
Commuter movement is shown to obey the Fick's law of diffusion, where the graph Laplacian provides an analytical model.
- Score: 30.20313152318824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A unifying graph theoretic framework for the modelling of metro
transportation networks is proposed. This is achieved by first introducing a
basic graph framework for the modelling of the London underground system from a
diffusion law point of view. This forms a basis for the analysis of both
station importance and their vulnerability, whereby the concept of graph vertex
centrality plays a key role. We next explore k-edge augmentation of a graph
topology, and illustrate its usefulness both for improving the network
robustness and as a planning tool. Upon establishing the graph theoretic
attributes of the underlying graph topology, we proceed to introduce models for
processing data on such a metro graph. Commuter movement is shown to obey the
Fick's law of diffusion, where the graph Laplacian provides an analytical model
for the diffusion process of commuter population dynamics. Finally, we also
explore the application of modern deep learning models, such as graph neural
networks and hyper-graph neural networks, as general purpose models for the
modelling and forecasting of underground data, especially in the context of the
morning and evening rush hours. Comprehensive simulations including the
passenger in- and out-flows during the morning rush hour in London demonstrates
the advantages of the graph models in metro planning and traffic management, a
formal mathematical approach with wide economic implications.
Related papers
- Towards a graph-based foundation model for network traffic analysis [3.0558245652654907]
Foundation models can grasp the complexities of network traffic dynamics and adapt to any specific task or environment with minimal fine-tuning.
Previous approaches have used tokenized hex-level packet data.
We propose a new, efficient graph-based alternative at the flow-level.
arXiv Detail & Related papers (2024-09-12T15:04:34Z) - Injecting Hamiltonian Architectural Bias into Deep Graph Networks for Long-Range Propagation [55.227976642410766]
dynamics of information diffusion within graphs is a critical open issue that heavily influences graph representation learning.
Motivated by this, we introduce (port-)Hamiltonian Deep Graph Networks.
We reconcile under a single theoretical and practical framework both non-dissipative long-range propagation and non-conservative behaviors.
arXiv Detail & Related papers (2024-05-27T13:36:50Z) - Revealing Decurve Flows for Generalized Graph Propagation [108.80758541147418]
This study addresses the limitations of the traditional analysis of message-passing, central to graph learning, by defining em textbfgeneralized propagation with directed and weighted graphs.
We include a preliminary exploration of learned propagation patterns in datasets, a first in the field.
arXiv Detail & Related papers (2024-02-13T14:13:17Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - A spatial-temporal short-term traffic flow prediction model based on
dynamical-learning graph convolution mechanism [0.0]
Short-term traffic flow prediction is a vital branch of the Intelligent Traffic System (ITS) and plays an important role in traffic management.
Graph convolution network (GCN) is widely used in traffic prediction models to better deal with the graphical structure data of road networks.
To deal with this drawback, this paper proposes a novel location graph convolutional network (Location-GCN)
arXiv Detail & Related papers (2022-05-10T09:19:12Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting [6.428566223253948]
We propose a new traffic forecasting framework--S-Temporal Latent Graph Structure Learning networks (ST-LGSL)
The model employs a graph based on Multilayer perceptron and K-Nearest Neighbor, which learns the latent graph topological information from the entire data.
With the dependencies-kNN based on ground-truth adjacency matrix and similarity metric in kNN, ST-LGSL aggregates the top focusing on geography and node similarity.
arXiv Detail & Related papers (2022-02-25T10:02:49Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs [26.77596449192451]
We propose a model that predicts the evolution of dynamic graphs.
Specifically, we use a graph neural network along with a recurrent architecture to capture the temporal evolution patterns of dynamic graphs.
We evaluate the proposed model on several artificial datasets following common network evolving dynamics, as well as on real-world datasets.
arXiv Detail & Related papers (2020-03-02T12:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.