論文の概要: Counterfactual Explanations for Neural Recommenders
- arxiv url: http://arxiv.org/abs/2105.05008v1
- Date: Tue, 11 May 2021 13:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-12 13:45:53.058855
- Title: Counterfactual Explanations for Neural Recommenders
- Title(参考訳): ニューラルリコメンダの非現実的説明
- Authors: Khanh Hiep Tran, Azin Ghazimatin, Rishiraj Saha Roy
- Abstract要約: 神経レコメンダーの非現実的な説明を見つけるための最初の一般的なフレームワークであるACCENTを提案する。
我々はACCENTを使って2つの一般的なニューラルモデルに対する反実的説明を生成する。
- 参考スコア(独自算出の注目度): 10.880181451789266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding why specific items are recommended to users can significantly
increase their trust and satisfaction in the system. While neural recommenders
have become the state-of-the-art in recent years, the complexity of deep models
still makes the generation of tangible explanations for end users a challenging
problem. Existing methods are usually based on attention distributions over a
variety of features, which are still questionable regarding their suitability
as explanations, and rather unwieldy to grasp for an end user. Counterfactual
explanations based on a small set of the user's own actions have been shown to
be an acceptable solution to the tangibility problem. However, current work on
such counterfactuals cannot be readily applied to neural models. In this work,
we propose ACCENT, the first general framework for finding counterfactual
explanations for neural recommenders. It extends recently-proposed influence
functions for identifying training points most relevant to a recommendation,
from a single to a pair of items, while deducing a counterfactual set in an
iterative process. We use ACCENT to generate counterfactual explanations for
two popular neural models, Neural Collaborative Filtering (NCF) and Relational
Collaborative Filtering (RCF), and demonstrate its feasibility on a sample of
the popular MovieLens 100K dataset.
- Abstract(参考訳): ユーザが特定のアイテムを推奨する理由を理解することで、システムの信頼性と満足度が大幅に向上する。
近年、ニューラルリコメンデータは最先端の技術となっているが、深層モデルの複雑さによって、エンドユーザにとって具体的な説明は難しい問題となっている。
既存の手法は通常、様々な特徴に対する注意分布に基づいており、それらが説明として適合性に疑問を呈しており、エンドユーザーにとっては理解しづらい。
ユーザ自身の行動の小さなセットに基づく対実的説明は,有意性問題に対する許容可能な解決法であることが示されている。
しかし、このような反事実に関する現在の研究は、神経モデルに容易に適用できない。
本研究では,ニューラルレコメンデータに対する対実的説明を見つけるための最初の一般的なフレームワークであるACCENTを提案する。
これは最近提案された影響関数を拡張し、単一の項目から一対の項目に最も関連するトレーニングポイントを識別し、反復的なプロセスで反現実的なセットを推論する。
我々はACCENTを用いて、ニューラルコラボレーティブ・フィルタリング(NCF)とリレーショナルコラボレーティブ・フィルタリング(RCF)の2つの一般的なニューラルネットワークモデルに対する反実的説明を生成し、人気の高いMovieLens 100Kデータセットのサンプルでその実現可能性を示す。
関連論文リスト
- Even-if Explanations: Formal Foundations, Priorities and Complexity [18.126159829450028]
線形モデルとツリーモデルの両方がニューラルネットワークよりも厳密に解釈可能であることを示す。
ユーザが好みに基づいて説明をパーソナライズすることのできる、嗜好に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T11:38:58Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
FKGC (Few-shot Knowledge Graph completion) は、失明した事実を、無意味な関連のある事実で予測することを目的としている。
既存のFKGC手法はメートル法学習やメタラーニングに基づいており、しばしば分布外や過度に適合する問題に悩まされる。
本稿では,数ショット知識グラフ補完(NP-FKGC)のためのフローベースニューラルプロセスの正規化を提案する。
論文 参考訳(メタデータ) (2023-04-17T11:42:28Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
強化学習(TMER-RL)を活用した新しい時間的メタパスガイド型説明可能な勧告を提案する。
TMER-RLは, 動的知識グラフ上での動的ユーザ・イテム進化を逐次モデル化するために, 注意機構を持つ連続項目間の強化項目・イテムパスをモデル化する。
2つの実世界のデータセットに対するTMERの大規模な評価は、最近の強いベースラインと比較して最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-11-24T04:34:26Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
コールドスタート勧告は、現代のオンラインアプリケーションにおいて緊急の問題である。
メタ学習に基づくコールドスタートシーケンシャルレコメンデーションフレームワークMetaCSRを提案する。
MetaCSRは、通常のユーザの行動から共通のパターンを学ぶ能力を持っている。
論文 参考訳(メタデータ) (2021-10-18T08:11:24Z) - Sparse-Interest Network for Sequential Recommendation [78.83064567614656]
本稿では,シーケンシャルレコメンデーションのためのtextbfSparse textbfInterest textbfNEtwork(SINE)を提案する。
我々のスパース関心モジュールは、大きなコンセプトプールから各ユーザに対してスパースの概念セットを適応的に推測することができる。
SINEは最先端の手法よりも大幅に改善できる。
論文 参考訳(メタデータ) (2021-02-18T11:03:48Z) - Freudian and Newtonian Recurrent Cell for Sequential Recommendation [3.452491349203391]
シーケンシャルレコメンデータシステムは、行動パターンに基づいた魅力的なアイテムをユーザに推奨することを目的としている。
本稿では,Freudian および Newtonian の視点から新たな再発細胞である FaNC を提案する。
FaNCはユーザーの状態を意識状態と無意識状態に分割し、ユーザーの決定プロセスはフロイトの2つの原則によってモデル化される。
論文 参考訳(メタデータ) (2021-02-11T12:46:23Z) - Neural Representations in Hybrid Recommender Systems: Prediction versus
Regularization [8.384351067134999]
我々は、予測のための神経表現(NRP)フレームワークを定義し、オートエンコーダベースのレコメンデーションシステムに適用する。
また、NRPフレームワークを、ユーザやアイテム情報を再構成することなく評価を予測できる直接ニューラルネットワーク構造に適用する。
その結果、ニューラル表現は正規化よりも予測に優れており、NRPフレームワークと直接ニューラルネットワーク構造が組み合わさって、予測タスクにおける最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-12T23:12:49Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z) - CSRN: Collaborative Sequential Recommendation Networks for News
Retrieval [26.852710435482997]
ニュースアプリが紙ベースのメディアの人気を引き継ぎ、パーソナライゼーションの絶好の機会となった。
リカレントニューラルネットワーク(RNN)ベースのシーケンシャルレコメンデーションは、ユーザの最近のブラウジング履歴を利用して将来のアイテムを予測する一般的なアプローチである。
本稿では、RNNに基づくシーケンシャルレコメンデーションとUserCFのキーアイデアを統合するためのディープニューラルネットワークのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-07T13:25:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。