Classicalization of Quantum Fluctuations at the Planck Scale in the
R_h=ct Universe
- URL: http://arxiv.org/abs/2105.05059v1
- Date: Mon, 10 May 2021 15:13:50 GMT
- Title: Classicalization of Quantum Fluctuations at the Planck Scale in the
R_h=ct Universe
- Authors: Fulvio Melia
- Abstract summary: New developments in the analysis of the most recent Planck data suggest that the primordial power spectrum has a cutoff associated with the first quantum fluctuation.
We demonstrate that the birth of quantum fluctuations at the Planck scale would have been a process' supplanting the need for a measurement' in quantum mechanics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum to classical transition of fluctuations in the early universe is
still not completely understood. Some headway has been made incorporating the
effects of decoherence and the squeezing of states, though the methods and
procedures continue to be challenged. But new developments in the analysis of
the most recent Planck data suggest that the primordial power spectrum has a
cutoff associated with the very first quantum fluctuation to have emerged into
the semi-classical universe from the Planck domain at about the Planck time. In
this paper, we examine the implications of this result on the question of
classicalization, and demonstrate that the birth of quantum fluctuations at the
Planck scale would have been a `process' supplanting the need for a
`measurement' in quantum mechanics. Emerging with a single wavenumber, these
fluctuations would have avoided the interference between different degrees of
freedom in a superposed state. Moreover, the implied scalar-field potential had
an equation-of-state consistent with the zero active mass condition in general
relativity, allowing the quantum fluctuations to emerge in their ground state
with a time-independent frequency. They were therefore effectively quantum
harmonic oscillators with classical correlations in phase space from the very
beginning.
Related papers
- Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Quantum Mechanical Reality: Entanglement and Decoherence [0.0]
We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences.
Within this framework, theories are conceptual constructs applying to models generated in the phenomenal world within limited contexts.
arXiv Detail & Related papers (2023-07-22T19:08:00Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Completing the quantum ontology with the electromagnetic zero-point
field [0.0]
This text begins with a series of critical considerations on the initial interpretation of quantum phenomena observed in atomic systems.
Arguments are given in favour of the random zero-point radiation field (ZPF) as the element needed to complete the quantum process.
The permanent presence of the field drastically affects the dynamics of the particle, which eventually falls under the control of the field.
arXiv Detail & Related papers (2022-07-13T23:11:48Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Experimental Adiabatic Quantum Metrology with the Heisenberg scaling [21.42706958416718]
We propose an adiabatic scheme on a perturbed Ising spin model with the first order quantum phase transition.
We experimentally implement the adiabatic scheme on the nuclear magnetic resonance and show that the achieved precision attains the Heisenberg scaling.
arXiv Detail & Related papers (2021-02-14T03:08:54Z) - Phase space trajectories in quantum mechanics [0.0]
An adapted representation of quantum mechanics sheds new light on the relationship between quantum states and classical states.
In this approach the space of quantum states splits into a product of the state space of classical mechanics and a Hilbert space.
arXiv Detail & Related papers (2020-08-27T06:26:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.