論文の概要: Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering
- arxiv url: http://arxiv.org/abs/2105.05320v1
- Date: Fri, 30 Apr 2021 06:51:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-14 13:03:41.529329
- Title: Seeing All From a Few: Nodes Selection Using Graph Pooling for Graph
Clustering
- Title(参考訳): グラフクラスタリングのためのグラフプールを用いたノード選択
- Authors: Yiming Wang, Dongxia Chang, Zhiqian Fu, and Yao Zhao
- Abstract要約: ノイズの多いエッジとグラフのノードは、クラスタリング結果を悪化させる可能性がある。
ノイズの多いノードやエッジに対するグラフクラスタリングの堅牢性を改善するために,新しいデュアルグラフ埋め込みネットワーク(DGEN)を提案する。
3つのベンチマークグラフデータセットの実験は、いくつかの最先端アルゴリズムと比較して優位性を示す。
- 参考スコア(独自算出の注目度): 37.68977275752782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph clustering aiming to obtain a partition of data using the graph
information, has received considerable attention in recent years. However,
noisy edges and nodes in the graph may make the clustering results worse. In
this paper, we propose a novel dual graph embedding network(DGEN) to improve
the robustness of the graph clustering to the noisy nodes and edges. DGEN is
designed as a two-step graph encoder connected by a graph pooling layer, which
learns the graph embedding of the selected nodes. Based on the assumption that
a node and its nearest neighbors should belong to the same cluster, we devise
the neighbor cluster pooling(NCPool) to select the most informative subset of
vertices based on the clustering assignments of nodes and their nearest
neighbor. This can effectively alleviate the impact of the noise edge to the
clustering. After obtaining the clustering assignments of the selected nodes, a
classifier is trained using these selected nodes and the final clustering
assignments for all the nodes can be obtained by this classifier. Experiments
on three benchmark graph datasets demonstrate the superiority compared with
several state-of-the-art algorithms.
- Abstract(参考訳): 近年,グラフ情報を用いたデータの分割を目的としたグラフクラスタリングが注目されている。
しかし、グラフ内のノイズの多いエッジとノードはクラスタリング結果を悪化させる可能性がある。
本稿では,ノイズの多いノードやエッジに対するグラフクラスタリングのロバスト性を改善するために,新しいデュアルグラフ埋め込みネットワーク(DGEN)を提案する。
DGENはグラフプーリング層で接続された2段階のグラフエンコーダとして設計され、選択したノードのグラフ埋め込みを学習する。
ノードとその隣接ノードが同じクラスタに属するべきであるという仮定に基づいて、ノードと隣接ノードのクラスタリング割り当てに基づいて、頂点の最も有益なサブセットを選択するために、隣接クラスタプール(ncpool)を考案する。
これにより、ノイズエッジがクラスタリングに与える影響を効果的に軽減できる。
選択されたノードのクラスタリング代入を取得すると、これらの選択されたノードを使用して分類器を訓練し、この分類器により全てのノードに対する最終的なクラスタリング代入を得ることができる。
3つのベンチマークグラフデータセットの実験は、いくつかの最先端アルゴリズムと比較して優位性を示す。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - Careful Selection and Thoughtful Discarding: Graph Explicit Pooling
Utilizing Discarded Nodes [53.08068729187698]
本稿では,ノードと最終表現ベクトルの関係を明示的に活用してノードを選択するグラフ明示プール法を提案する。
提案手法の有効性を検証するため,12種類の広く使用されているデータセットを対象とした総合的な実験を行った。
論文 参考訳(メタデータ) (2023-11-21T14:44:51Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - MPool: Motif-Based Graph Pooling [0.0]
グラフニューラルネットワーク(GNN)は近年,グラフ分類を含む多くのグラフ関連タスクにおいて,強力な技術となっている。
マルチチャネルモチーフに基づくグラフポーリング手法(MPool)を提案する。
第1のチャネルとして、ノードのモチーフ隣接性を考慮したノードランキングモデルを設計し、ノード選択に基づくグラフプーリングを開発する。
第2のチャネルとして、モチーフアジャシエンスを用いたスペクトルクラスタリングモデルを設計し、クラスタベースのグラフプーリングを開発する。
最終層として、各チャネルの結果を最終グラフ表現に集約する。
論文 参考訳(メタデータ) (2023-03-07T05:21:15Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
多くの現実世界のシステムは、システム内の異なるエンティティがノードによって表現され、エッジによって相互作用するグラフとして表現することができる。
グラフィカルな構造を持つ大規模なデータセットを研究する上で重要なタスクはグラフクラスタリングである。
本稿では,FIR(Finite Impulse Response)およびARMA(Autoregressive moving Average)グラフフィルタのパラメータをクラスタリングに最適化したグラフ信号処理手法を提案する。
論文 参考訳(メタデータ) (2022-11-09T01:49:23Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
本稿では,グラフ InfoClust というグラフ表現学習手法を提案する。
同社はさらに、クラスタレベルの情報コンテンツをキャプチャしようとしている。
この最適化により、ノード表現はよりリッチな情報とノイズ相互作用をキャプチャし、それによって品質が向上する。
論文 参考訳(メタデータ) (2020-09-15T09:33:20Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。