Unsupervised Representation Learning from Pathology Images with
Multi-directional Contrastive Predictive Coding
- URL: http://arxiv.org/abs/2105.05345v1
- Date: Tue, 11 May 2021 21:17:13 GMT
- Title: Unsupervised Representation Learning from Pathology Images with
Multi-directional Contrastive Predictive Coding
- Authors: Jacob Carse, Frank Carey, Stephen McKenna
- Abstract summary: We present a modification to the CPC framework for use with digital pathology patches.
This is achieved by introducing an alternative mask for building the latent context.
We show that our proposed modification can yield improved deep classification of histology patches.
- Score: 0.33148826359547523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital pathology tasks have benefited greatly from modern deep learning
algorithms. However, their need for large quantities of annotated data has been
identified as a key challenge. This need for data can be countered by using
unsupervised learning in situations where data are abundant but access to
annotations is limited. Feature representations learned from unannotated data
using contrastive predictive coding (CPC) have been shown to enable classifiers
to obtain state of the art performance from relatively small amounts of
annotated computer vision data. We present a modification to the CPC framework
for use with digital pathology patches. This is achieved by introducing an
alternative mask for building the latent context and using a multi-directional
PixelCNN autoregressor. To demonstrate our proposed method we learn feature
representations from the Patch Camelyon histology dataset. We show that our
proposed modification can yield improved deep classification of histology
patches.
Related papers
- MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
We propose a novel framework leveraging domain-specific medical knowledge as guiding signals to integrate language information into the visual domain through image-text contrastive learning.
Our model includes global contrastive learning with our designed divergence encoder, local token-knowledge-patch alignment contrastive learning, and knowledge-guided category-level contrastive learning with expert knowledge.
Notably, MLIP surpasses state-of-the-art methods even with limited annotated data, highlighting the potential of multimodal pre-training in advancing medical representation learning.
arXiv Detail & Related papers (2024-02-03T05:48:50Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Domain Adaptive Multiple Instance Learning for Instance-level Prediction
of Pathological Images [45.132775668689604]
We propose a new task setting to improve the classification performance of the target dataset without increasing annotation costs.
In order to combine the supervisory information of both methods effectively, we propose a method to create pseudo-labels with high confidence.
arXiv Detail & Related papers (2023-04-07T08:31:06Z) - Diagnosing and Rectifying Vision Models using Language [31.588965563961573]
Recent contrastive learning models have demonstrated the ability to learn an embedding space suitable for building strong vision classifiers.
Our work highlights a distinct advantage of this multi-modal embedding space: the ability to diagnose vision classifiers through natural language.
Our proposed method can discover high-error data slices, identify influential attributes and further rectify undesirable model behaviors.
arXiv Detail & Related papers (2023-02-08T18:59:42Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - IntroVAC: Introspective Variational Classifiers for Learning
Interpretable Latent Subspaces [6.574517227976925]
IntroVAC learns interpretable latent subspaces by exploiting information from an additional label.
We show that IntroVAC is able to learn meaningful directions in the latent space enabling fine manipulation of image attributes.
arXiv Detail & Related papers (2020-08-03T10:21:41Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.