Homogeneous vector bundles and $G$-equivariant convolutional neural
networks
- URL: http://arxiv.org/abs/2105.05400v1
- Date: Wed, 12 May 2021 02:06:04 GMT
- Title: Homogeneous vector bundles and $G$-equivariant convolutional neural
networks
- Authors: Jimmy Aronsson
- Abstract summary: $G$-equivariant convolutional neural networks (GCNNs) are a geometric deep learning model for data defined on a homogeneous $G$-space $mathcalM$.
In this paper, we analyze GCNNs on homogeneous spaces $mathcalM = G/K$ in the case of unimodular Lie groups $G$ and compact subgroups $K leq G$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: $G$-equivariant convolutional neural networks (GCNNs) is a geometric deep
learning model for data defined on a homogeneous $G$-space $\mathcal{M}$. GCNNs
are designed to respect the global symmetry in $\mathcal{M}$, thereby
facilitating learning. In this paper, we analyze GCNNs on homogeneous spaces
$\mathcal{M} = G/K$ in the case of unimodular Lie groups $G$ and compact
subgroups $K \leq G$. We demonstrate that homogeneous vector bundles is the
natural setting for GCNNs. We also use reproducing kernel Hilbert spaces to
obtain a precise criterion for expressing $G$-equivariant layers as
convolutional layers. This criterion is then rephrased as a bandwidth
criterion, leading to even stronger results for some groups.
Related papers
- Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Learning Hierarchical Polynomials with Three-Layer Neural Networks [56.71223169861528]
We study the problem of learning hierarchical functions over the standard Gaussian distribution with three-layer neural networks.
For a large subclass of degree $k$s $p$, a three-layer neural network trained via layerwise gradientp descent on the square loss learns the target $h$ up to vanishing test error.
This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
arXiv Detail & Related papers (2023-11-23T02:19:32Z) - A General Framework for Robust G-Invariance in G-Equivariant Networks [5.227502964814928]
We introduce a general method for achieving robust group-invariance in group-equivariant convolutional neural networks ($G$-CNNs)
The completeness of the triple correlation endows the $G$-TC layer with strong robustness.
We demonstrate the benefits of this method on both commutative and non-commutative groups.
arXiv Detail & Related papers (2023-10-28T02:27:34Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Implicit Convolutional Kernels for Steerable CNNs [5.141137421503899]
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and transformations of an origin-preserving group $G$.
We propose using implicit neural representation via multi-layer perceptrons (MLPs) to parameterize $G$-steerable kernels.
We prove the effectiveness of our method on multiple tasks, including N-body simulations, point cloud classification and molecular property prediction.
arXiv Detail & Related papers (2022-12-12T18:10:33Z) - Graph Convolutional Neural Networks as Parametric CoKleisli morphisms [0.0]
We define the bicategory of Graph Convolutional Neural Networks $mathbfGCNN_n$ for an arbitrary graph with $n$ nodes.
We show it can be factored through the already existing categorical constructions for deep learning called $mathbfPara$ and $mathbfLens$ with the base category set to the CoKleisli category of the product comonad.
arXiv Detail & Related papers (2022-12-01T14:49:58Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
We show that SGD-trained ReLU NNs can learn a single-index target of the form $y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$ by recovering the principal direction.
We also provide compress guarantees for NNs using the approximate low-rank structure produced by SGD.
arXiv Detail & Related papers (2022-09-29T15:29:10Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
We provide a systematic treatment of boundaries based on subgroups $Ksubseteq G$ with the Kitaev quantum double $D(G)$ model in the bulk.
The boundary sites are representations of a $*$-subalgebra $Xisubseteq D(G)$ and we explicate its structure as a strong $*$-quasi-Hopf algebra.
As an application of our treatment, we study patches with boundaries based on $K=G$ horizontally and $K=e$ vertically and show how these could be used in a quantum computer
arXiv Detail & Related papers (2022-08-12T15:05:07Z) - Geometric Deep Learning and Equivariant Neural Networks [0.9381376621526817]
We survey the mathematical foundations of geometric deep learning, focusing on group equivariant and gauge equivariant neural networks.
We develop gauge equivariant convolutional neural networks on arbitrary manifold $mathcalM$ using principal bundles with structure group $K$ and equivariant maps between sections of associated vector bundles.
We analyze several applications of this formalism, including semantic segmentation and object detection networks.
arXiv Detail & Related papers (2021-05-28T15:41:52Z) - A Practical Method for Constructing Equivariant Multilayer Perceptrons
for Arbitrary Matrix Groups [115.58550697886987]
We provide a completely general algorithm for solving for the equivariant layers of matrix groups.
In addition to recovering solutions from other works as special cases, we construct multilayer perceptrons equivariant to multiple groups that have never been tackled before.
Our approach outperforms non-equivariant baselines, with applications to particle physics and dynamical systems.
arXiv Detail & Related papers (2021-04-19T17:21:54Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.