論文の概要: Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes
- arxiv url: http://arxiv.org/abs/2105.05559v1
- Date: Wed, 12 May 2021 10:18:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-13 20:34:27.952382
- Title: Learning Uncertainty with Artificial Neural Networks for Improved
Remaining Time Prediction of Business Processes
- Title(参考訳): ビジネスプロセスの残時間予測改善のためのニューラルネットワークによる不確かさの学習
- Authors: Hans Weytjens and Jochen De Weerdt
- Abstract要約: 本論文では,これらの手法を予測過程のモニタリングに応用する。
より正確な予測と迅速な作業に貢献できることが分かりました。
これは多くの興味深い応用をもたらし、より小さなデータセットを持つ予測システムを早期に導入し、人間とのより良い協力を促進する。
- 参考スコア(独自算出の注目度): 0.15229257192293202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks will always make a prediction, even when
completely uncertain and regardless of the consequences. This obliviousness of
uncertainty is a major obstacle towards their adoption in practice. Techniques
exist, however, to estimate the two major types of uncertainty: model
uncertainty and observation noise in the data. Bayesian neural networks are
theoretically well-founded models that can learn the model uncertainty of their
predictions. Minor modifications to these models and their loss functions allow
learning the observation noise for individual samples as well. This paper is
the first to apply these techniques to predictive process monitoring. We found
that they contribute towards more accurate predictions and work quickly.
However, their main benefit resides with the uncertainty estimates themselves
that allow the separation of higher-quality from lower-quality predictions and
the building of confidence intervals. This leads to many interesting
applications, enables an earlier adoption of prediction systems with smaller
datasets and fosters a better cooperation with humans.
- Abstract(参考訳): 人工ニューラルネットワークは、完全に不確実で結果に関係なく、常に予測を行う。
この不確実性の不確実性は、実際に採用する上での大きな障害である。
しかし、データ内のモデル不確実性と観測ノイズの2つの主要な不確かさを推定する手法が存在する。
ベイズニューラルネットワークは理論上、その予測のモデルの不確実性を学ぶことができるモデルである。
これらのモデルと損失関数のマイナーな修正により、個々のサンプルの観測ノイズも学習できる。
本稿では,これらの手法を予測プロセス監視に適用した最初の論文である。
より正確な予測に寄与し、迅速に働くことが分かりました。
しかし、彼らの主な利点は、品質の低い予測から高品質を分離し、信頼区間を構築することができる不確実性の推定そのものにある。
これは多くの興味深い応用をもたらし、より小さなデータセットを持つ予測システムを早期に導入し、人間とのより良い協力を促進する。
関連論文リスト
- Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
人間の軌道予測は人間の行動を理解し予測し、社会ロボットから自動運転車への応用を可能にする。
モデルフリー手法は予測精度が優れているが説明可能性に欠ける一方、モデルベース手法は説明可能性を提供するが、よく予測できない。
BNSP-SFMは,11種類の最先端手法と比較して,予測精度を最大50%向上することを示す。
論文 参考訳(メタデータ) (2023-07-04T16:45:21Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Predictive Process Monitoring [0.114219428942199]
学習可能な不確実性には、トレーニングデータ不足によるモデル不確実性と、ノイズによる観察不確実性がある。
我々の貢献は、これらの不確実性の概念を予測プロセス監視タスクに適用し、不確実性に基づくモデルをトレーニングし、残りの時間と結果を予測することである。
論文 参考訳(メタデータ) (2022-06-13T17:05:27Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
本研究では,現実の大規模データセットにおける信頼性の予測問題について検討する。
我々は、先行技術損失関数で訓練された信頼性予測器が、正しい予測と誤った予測の両方を信頼に値するものとみなす傾向があることを観察する。
そこで我々は,2つのスライド状の曲線による不正確な予測から,特徴w.r.t.正しい予測を分離する,新たな急勾配損失を提案する。
論文 参考訳(メタデータ) (2021-09-30T19:19:09Z) - Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models [11.171712535005357]
本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
論文 参考訳(メタデータ) (2021-07-26T14:55:02Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Predictive Business Process Monitoring via Generative Adversarial Nets:
The Case of Next Event Prediction [0.026249027950824504]
本稿では,次の事象予測の問題に対処するための,新たな逆トレーニングフレームワークを提案する。
これは、2人のプレイヤーのゲームで1つのニューラルネットワークをもう1つのニューラルネットワークと対戦させることで機能し、それは地上の真実と区別できない予測につながる。
単純なネットワークアーキテクチャとナイーブな特徴符号化を使用しても、正確さと予測のイヤーラインの両方において、体系的にすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2020-03-25T08:31:28Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。