論文の概要: Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models
- arxiv url: http://arxiv.org/abs/2107.12250v1
- Date: Mon, 26 Jul 2021 14:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-27 16:20:30.664769
- Title: Uncertainty-Aware Time-to-Event Prediction using Deep Kernel Accelerated
Failure Time Models
- Title(参考訳): 深いカーネル加速故障時間モデルを用いた不確実性を考慮したイベント時間予測
- Authors: Zhiliang Wu, Yinchong Yang, Peter A. Fasching, Volker Tresp
- Abstract要約: 本稿では,時間-時間予測タスクのためのDeep Kernel Accelerated Failure Timeモデルを提案する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
- 参考スコア(独自算出の注目度): 11.171712535005357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recurrent neural network based solutions are increasingly being used in the
analysis of longitudinal Electronic Health Record data. However, most works
focus on prediction accuracy and neglect prediction uncertainty. We propose
Deep Kernel Accelerated Failure Time models for the time-to-event prediction
task, enabling uncertainty-awareness of the prediction by a pipeline of a
recurrent neural network and a sparse Gaussian Process. Furthermore, a deep
metric learning based pre-training step is adapted to enhance the proposed
model. Our model shows better point estimate performance than recurrent neural
network based baselines in experiments on two real-world datasets. More
importantly, the predictive variance from our model can be used to quantify the
uncertainty estimates of the time-to-event prediction: Our model delivers
better performance when it is more confident in its prediction. Compared to
related methods, such as Monte Carlo Dropout, our model offers better
uncertainty estimates by leveraging an analytical solution and is more
computationally efficient.
- Abstract(参考訳): リカレントニューラルネットワークベースのソリューションは、縦型Electronic Health Recordデータの解析にますます利用されている。
しかし、ほとんどの研究は予測精度と予測の不確実性を無視している。
本稿では,時系列予測タスクのための深いカーネル加速故障時間モデルを提案し,再帰ニューラルネットワークのパイプラインとスパースガウスプロセスによる予測の不確実性認識を可能にする。
さらに、深層メトリック学習に基づく事前学習ステップを適用して、提案モデルを強化する。
我々のモデルは、2つの実世界のデータセットの実験において、繰り返しニューラルネットワークに基づくベースラインよりも良い点推定性能を示す。
さらに重要なことに、我々のモデルからの予測的分散は、時間から時間への予測の不確実性の推定を定量化するために利用することができる。
モンテカルロ・ドロップアウトのような関連する手法と比較して,解析解を活用し,より計算効率の良い不確実性推定を行う。
関連論文リスト
- Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
本稿では,大規模事前学習モデルを用いて,サンプル難易度を考慮したエントロピー正規化による下流モデルトレーニングを指導する。
我々は、挑戦的なベンチマークで精度と不確実性の校正を同時に改善する。
論文 参考訳(メタデータ) (2023-04-20T07:29:23Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Quantifying Predictive Uncertainty in Medical Image Analysis with Deep
Kernel Learning [14.03923026690186]
本研究では,予測の不確かさを推定できる不確実性を考慮した深層カーネル学習モデルを提案する。
ほとんどの場合、提案したモデルは一般的なアーキテクチャよりも優れた性能を示している。
私たちのモデルは、挑戦的で議論の余地のあるテストサンプルを検出するためにも使用できます。
論文 参考訳(メタデータ) (2021-06-01T17:09:47Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
モデル性能の予測間隔を計算する手法を提案する。
我々は,幅広いドリフト条件におけるアプローチを評価し,競合ベースラインよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-12-15T21:32:03Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。