Maxwell Demon and Einstein-Podolsky-Rosen Steering
- URL: http://arxiv.org/abs/2105.05656v4
- Date: Wed, 24 Apr 2024 12:17:59 GMT
- Title: Maxwell Demon and Einstein-Podolsky-Rosen Steering
- Authors: Meng-Jun Hu, Xiao-Min Hu, Yong-Sheng Zhang,
- Abstract summary: We consider whether quantum non-locality correlations can be simulated by performing work.
The Maxwell demon-assisted Einstein-Podolsky-Rosen steering is thus proposed.
We construct a quantum circuit model of Maxwell demon-assisted EPR steering.
- Score: 4.671908141423216
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of Maxwell demon and quantum entanglement is important because of its foundational significance in physics and its potential applications in quantum information. Previous research on the Maxwell demon has primarily focused on thermodynamics, taking into account quantum correlations. Here we consider from another perspective and ask whether quantum non-locality correlations can be simulated by performing work. The Maxwell demon-assisted Einstein-Podolsky-Rosen (EPR) steering is thus proposed, which implies a new type of loophole. The application of Landauer's erasure principle suggests that the only way to close this loophole during a steering task is by continuously monitoring the heat fluctuation of the local environment by the participant. We construct a quantum circuit model of Maxwell demon-assisted EPR steering, which can be demonstrated by current programmable quantum processors, such as superconducting quantum computers. Based on this quantum circuit model, we obtain a quantitative formula describing the relationship between energy dissipation due to the work of the demon and quantum non-locality correlation. The result is of great physical interest because it provides a new way to explore and understand the relationship between quantum non-locality, information, and thermodynamics.
Related papers
- Quantum decoherence from complex saddle points [0.0]
Quantum decoherence is the effect that bridges quantum physics to classical physics.
We present some first-principle calculations in the Caldeira-Leggett model.
We also discuss how to extend our work to general models by Monte Carlo calculations.
arXiv Detail & Related papers (2024-08-29T15:35:25Z) - Maxwell's demon across the quantum-to-classical transition [0.0]
In scenarios coined Maxwell's demon, information on microscopic degrees of freedom is used to seemingly violate the second law of thermodynamics.
We study an implementation of Maxwell's demon that can operate in both domains.
arXiv Detail & Related papers (2024-05-15T14:26:57Z) - Demonstration of Maxwell Demon-assistant Einstein-Podolsky-Rosen
Steering via Superconducting Quantum Processor [22.793245624610755]
The concept of Maxwell demon plays an essential role in connecting thermodynamics and information theory, while entanglement and non-locality are fundamental features of quantum theory.
Recently, a novel concept called Maxwell demon-assistant Einstein-Podolsky-Rosen (EPR) steering has been proposed, which suggests that it is possible to simulate quantum correlation by doing work.
In this study, we demonstrate Maxwell demon-assistant EPR steering with superconducting quantum circuits.
arXiv Detail & Related papers (2023-11-18T03:27:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Maxwell's two-demon engine under pure dephasing noise [0.41562334038629595]
A quantum Szil'ard engine has been proposed, showing that the quantum steerability between a Maxwell's demon and a work medium can be beneficial to a work extraction task.
We provide an example of the pure dephasing process, showing that the engine's quantumness can be degraded.
In this work, we tackle this question by introducing a second demon who can access a control system and make the work medium pass through two dephasing channels in a manner of quantum superposition.
arXiv Detail & Related papers (2022-06-13T06:27:00Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Autonomous dissipative Maxwell's demon in a diamond spin qutrit [0.0]
We experimentally realize an autonomous feedback process (Maxwell demon) with tunable dissipative strength.
The efficacy of the Maxwell demon is quantified by experimentally characterizing the fluctuations of the energy exchanged by the system with the environment.
This opens the way to the implementation of a new class of Maxwell demons, which could be useful for quantum sensing and quantum thermodynamic devices.
arXiv Detail & Related papers (2021-05-28T17:40:17Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.