Certifying classes of $d$-outcome measurements with quantum steering
- URL: http://arxiv.org/abs/2410.20477v1
- Date: Sun, 27 Oct 2024 15:32:53 GMT
- Title: Certifying classes of $d$-outcome measurements with quantum steering
- Authors: Alexandre C. Orthey Jr, Remigiusz Augusiak,
- Abstract summary: We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
- Score: 49.1574468325115
- License:
- Abstract: Device-independent certification schemes are based on minimal assumptions about the quantum system under study, which makes the most desirable among certification schemes. However, they are often the most challenging to implement. In order to reduce the implementation cost one can consider semi-device-independent schemes such as those based on quantum steering. Here we provide a construction of a family of steering inequalities which are tailored to large classes of $d$-outcomes projective measurements being a certain linear combination of the Heisenberg-Weyl operators on the untrusted side and a fixed set of known measurements on the trusted side. We then prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits. Importantly, in our self-testing proof, we do not assume the shared state to be pure, nor do we assume the measurements to be projective. We believe that our construction broadens the scope of semi-device-independent certification, paving the way for more general but still less costly quantum certification protocols.
Related papers
- Almost device-independent certification of GME states with minimal
measurements [41.94295877935867]
Device-independent certification of quantum states allows the characterization of quantum states present inside a device.
A major problem in this regard is to certify quantum states using minimal resources.
We consider the multipartite quantum steering scenario with an arbitrary number of parties but only one of which is trusted in the sense that the measurements performed by the trusted party are known.
arXiv Detail & Related papers (2024-02-28T17:54:55Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - High-dimensional entanglement certification: bounding relative entropy
of entanglement in $2d+1$ experiment-friendly measurements [77.34726150561087]
Entanglement -- the coherent correlations between parties in a quantum system -- is well-understood and quantifiable.
Despite the utility of such systems, methods for quantifying high-dimensional entanglement are more limited and experimentally challenging.
We present a novel certification method whose measurement requirements scale linearly with dimension subsystem.
arXiv Detail & Related papers (2022-10-19T16:52:21Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Self-testing of any pure entangled state with minimal number of
measurements and optimal randomness certification in one-sided
device-independent scenario [0.0]
certification of quantum systems and their properties has become a field of intensive studies.
We propose a self-testing scheme for all bipartite entangled states using a single family of steering inequalities with the minimal number of two measurements per party.
arXiv Detail & Related papers (2021-10-28T14:54:08Z) - Robust certification of arbitrary outcome quantum measurements from
temporal correlations [0.0]
We establish a protocol for certification of a particular set of $d$-outcome quantum measurements.
We show that our protocol is robust against practical non-ideal realizations.
As an offshoot of our protocol, we present a scheme for secure certification of genuine quantum randomness.
arXiv Detail & Related papers (2021-10-03T16:19:16Z) - Certification of incompatible measurements using quantum steering [0.0]
We consider the problem of certification of quantum measurements with an arbitrary number of outcomes.
We propose a simple scheme for certifying any set of $d$-outcome projective measurements which do not share any common invariant proper subspace.
arXiv Detail & Related papers (2021-07-01T13:04:47Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - On the optimal certification of von Neumann measurements [55.41644538483948]
certification of quantum measurements can be viewed as the extension of quantum hypotheses testing.
We show the connection between the certification of quantum channels or von Neumann measurements and the notion of $q$-numerical range.
arXiv Detail & Related papers (2020-09-14T22:38:23Z) - Robust self-testing of steerable quantum assemblages and its
applications on device-independent quantum certification [0.0]
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing.
We propose a framework called "robust self-testing of steerable quantum assemblages"
Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved.
arXiv Detail & Related papers (2020-02-07T14:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.