Experimental Sample-Efficient and Device-Independent GHZ State Certification
- URL: http://arxiv.org/abs/2407.13529v1
- Date: Thu, 18 Jul 2024 14:01:42 GMT
- Title: Experimental Sample-Efficient and Device-Independent GHZ State Certification
- Authors: Laura dos Santos Martins, Nicolas Laurent-Puig, Ivan Šupić, Damian Markham, Eleni Diamanti,
- Abstract summary: certification of quantum resources is a critical tool in the development of quantum information processing.
We show the efficient and device-independent certification of a single copy of a four-qubit GHZ state.
- Score: 1.1650821883155187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The certification of quantum resources is a critical tool in the development of quantum information processing. In particular, quantum state verification is a fundamental building block for communication and computation applications, determining whether the involved parties can trust the resources at hand or whether the application should be aborted. Self-testing methods have been used to tackle such verification tasks in a device-independent (DI) setting. However, these approaches commonly consider the limit of large (asymptotic), identically and independently distributed (IID) samples, which weakens the DI claim and poses serious challenges to their experimental implementation. Here we overcome these challenges by adopting a theoretical protocol enabling the certification of quantum states in the few-copies and non-IID regime and by leveraging a high-fidelity multipartite entangled photon source. This allows us to show the efficient and device-independent certification of a single copy of a four-qubit GHZ state that can readily be used for the robust and reliable implementation of quantum information tasks.
Related papers
- Certifying classes of $d$-outcome measurements with quantum steering [49.1574468325115]
We provide a construction of a family of steering inequalities tailored to large classes of $d$-outcomes projective measurements.
We prove that the maximal quantum violation of those inequalities can be used for certification of those measurements and the maximally entangled state of two qudits.
arXiv Detail & Related papers (2024-10-27T15:32:53Z) - Efficient and Device-Independent Active Quantum State Certification [0.0]
Entangled quantum states are essential ingredients for many quantum technologies, but they must be validated before they are used.
Most existing approaches are based on preparing an ensemble of nominally identical and independent (IID) quantum states, and then measuring each copy of the ensemble.
We experimentally implement quantum state certification (QSC), which measures only a subset of the ensemble, certifying the fidelity of the remaining states.
arXiv Detail & Related papers (2024-07-18T21:54:13Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Experimentally Certified Transmission of a Quantum Message through an
Untrusted and Lossy Quantum Channel via Bell's Theorem [1.0470286407954037]
In adversarial scenarios, a certification method can be vulnerable to attacks if too much trust is placed on the underlying system.
Here, we propose a protocol in a device independent framework, which allows for the certification of practical quantum transmission links.
In view of the use of the certified transmitted states for follow-up applications, our protocol moves beyond certification of the channel to allow us to estimate the quality of the transmitted quantum message itself.
arXiv Detail & Related papers (2023-04-19T12:22:49Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Quantum verification and estimation with few copies [63.669642197519934]
The verification and estimation of large entangled systems represents one of the main challenges in the employment of such systems for reliable quantum information processing.
This review article presents novel techniques focusing on a fixed number of resources (sampling complexity) and thus prove suitable for systems of arbitrary dimension.
Specifically, a probabilistic framework requiring at best only a single copy for entanglement detection is reviewed, together with the concept of selective quantum state tomography.
arXiv Detail & Related papers (2021-09-08T18:20:07Z) - Certification of incompatible measurements using quantum steering [0.0]
We consider the problem of certification of quantum measurements with an arbitrary number of outcomes.
We propose a simple scheme for certifying any set of $d$-outcome projective measurements which do not share any common invariant proper subspace.
arXiv Detail & Related papers (2021-07-01T13:04:47Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Theory of quantum system certification: a tutorial [1.583842747998493]
This tutorial explains prominent protocols for certifying the physical layer of quantum devices.
We discuss methods of direct quantum state certification, direct fidelity estimation, shadow fidelity estimation, direct quantum process certification, randomized benchmarking and cross-entropy benchmarking.
arXiv Detail & Related papers (2020-10-12T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.