Topological error correction with a Gaussian cluster state
- URL: http://arxiv.org/abs/2105.06012v1
- Date: Thu, 13 May 2021 00:36:52 GMT
- Title: Topological error correction with a Gaussian cluster state
- Authors: Shuhong Hao, Meihong Wang, Dong Wang, and Xiaolong Su
- Abstract summary: Topological error correction provides an effective method to correct errors in quantum computation.
We present a topological a error correction scheme with continuous variables based on an eight-partite Gaussian cluster state.
- Score: 5.22727991577222
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topological error correction provides an effective method to correct errors
in quantum computation. It allows quantum computation to be implemented with
higher error threshold and high tolerating loss rates. We present a topological
a error correction scheme with continuous variables based on an eight-partite
Gaussian cluster state. We show that topological quantum correlation between
two modes can be protected against a single quadrature phase displacement error
occurring on any mode and some of two errors occurring on two modes. More
interestingly, some cases of errors occurring on three modes can also be
recognised and corrected, which is different from the topological error
correction with discrete variables. We show that the final error rate after
correction can be further reduced if the modes are subjected to identical
errors occurring on all modes with equal probability. The presented results
provide a feasible scheme for topological error correction with continuous
variables and it can be experimentally demonstrated with a Gaussian cluster
state.
Related papers
- Classification Error Bound for Low Bayes Error Conditions in Machine Learning [50.25063912757367]
We study the relationship between the error mismatch and the Kullback-Leibler divergence in machine learning.
Motivated by recent observations of low model-based classification errors in many machine learning tasks, we propose a linear approximation of the classification error bound for low Bayes error conditions.
arXiv Detail & Related papers (2025-01-27T11:57:21Z) - The surface code under generic $X$-error channels: Statistical mechanics, error thresholds, and errorfield double phenomenology [0.0]
We study the code under the most general single-qubit $X$-error channel, encompassing both coherent and incoherent errors.
We compute maximum-likelihood thresholds and show that error coherence has negligible influence away from the fully coherent limit.
arXiv Detail & Related papers (2024-12-30T16:14:55Z) - Fundamental thresholds for computational and erasure errors via the coherent information [1.4767596539913115]
We propose a framework based on the coherent information (CI) of the mixed-state density operator associated to noisy QEC codes.
We show how to rigorously derive different families of statistical mechanics mappings for generic stabilizer QEC codes in the presence of both types of errors.
arXiv Detail & Related papers (2024-12-21T18:30:30Z) - Demonstrating dynamic surface codes [138.1740645504286]
We experimentally demonstrate three time-dynamic implementations of the surface code.
First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three.
Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors.
Third, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead.
arXiv Detail & Related papers (2024-12-18T21:56:50Z) - Using Detector Likelihood for Benchmarking Quantum Error Correction [0.0]
The behavior of real quantum hardware differs strongly from the simple error models typically used when simulating quantum error correction.
We show that this can be done by means of the average detector likelihood, which quantifies the rate at which error detection events occur.
This is then used to define an effective error rate at which simulations for a simple uniform noise model result in the same average detector likelihood, as well as a good prediction of the logical error rate.
arXiv Detail & Related papers (2024-08-04T16:34:38Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Randomized compiling in fault-tolerant quantum computation [0.0]
We present an algorithm projecting the state of the system onto a logical state with a well-defined error.
The algorithm does not significantly increase the depth of the logical circuit.
arXiv Detail & Related papers (2023-06-23T19:17:34Z) - Lattice gauge theory and topological quantum error correction with
quantum deviations in the state preparation and error detection [0.0]
We focus on the topological surface code, and study the case when the code suffers from both noise and coherent noise on the multi-qubit entanglement gates.
We conclude that this type of unavoidable coherent errors could have a fatal impact on the error correction performance.
arXiv Detail & Related papers (2023-01-30T13:12:41Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Quantum simulations of Lattice Gauge Theories (LGTs) are often formulated on an enlarged Hilbert space containing both physical and unphysical sectors.
We provide simple fault-tolerant procedures that exploit such redundancy by combining a phase flip error correction code with the Gauss' law constraint.
arXiv Detail & Related papers (2021-12-09T19:29:34Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.