論文の概要: Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey
- arxiv url: http://arxiv.org/abs/2310.14848v1
- Date: Mon, 23 Oct 2023 12:15:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 20:28:13.254336
- Title: Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey
- Title(参考訳): Zero-knowledge Proofが機械学習を検証可能に - 調査結果より
- Authors: Zhibo Xing, Zijian Zhang, Jiamou Liu, Ziang Zhang, Meng Li, Liehuang
Zhu, Giovanni Russello
- Abstract要約: 高品質なモデルは、効率的な最適化アルゴリズムだけでなく、膨大なデータと計算能力に基づいて構築されたトレーニングと学習プロセスにも依存する。
計算リソースの制限やデータプライバシの懸念など,さまざまな課題があるため,モデルを必要とするユーザは,マシンラーニングモデルをローカルにトレーニングすることはできないことが多い。
本稿では,ゼロ知識証明に基づく検証可能な機械学習(ZKP-VML)技術について包括的に調査する。
- 参考スコア(独自算出の注目度): 19.70499936572449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement of artificial intelligence technology, the usage
of machine learning models is gradually becoming part of our daily lives.
High-quality models rely not only on efficient optimization algorithms but also
on the training and learning processes built upon vast amounts of data and
computational power. However, in practice, due to various challenges such as
limited computational resources and data privacy concerns, users in need of
models often cannot train machine learning models locally. This has led them to
explore alternative approaches such as outsourced learning and federated
learning. While these methods address the feasibility of model training
effectively, they introduce concerns about the trustworthiness of the training
process since computations are not performed locally. Similarly, there are
trustworthiness issues associated with outsourced model inference. These two
problems can be summarized as the trustworthiness problem of model
computations: How can one verify that the results computed by other
participants are derived according to the specified algorithm, model, and input
data? To address this challenge, verifiable machine learning (VML) has emerged.
This paper presents a comprehensive survey of zero-knowledge proof-based
verifiable machine learning (ZKP-VML) technology. We first analyze the
potential verifiability issues that may exist in different machine learning
scenarios. Subsequently, we provide a formal definition of ZKP-VML. We then
conduct a detailed analysis and classification of existing works based on their
technical approaches. Finally, we discuss the key challenges and future
directions in the field of ZKP-based VML.
- Abstract(参考訳): 人工知能技術の急速な進歩により、機械学習モデルの利用は徐々に私たちの日常生活の一部になりつつある。
高品質モデルは、効率的な最適化アルゴリズムだけでなく、膨大なデータと計算能力に基づいて構築されたトレーニングと学習プロセスにも依存する。
しかし、実際には、限られた計算リソースやデータプライバシの懸念といった様々な課題のため、モデルを必要とするユーザは、しばしば機械学習モデルをローカルにトレーニングすることはできない。
これにより、アウトソース学習やフェデレーション学習といった、別のアプローチを探求することが可能になった。
これらの手法はモデルトレーニングの実現可能性に効果的に対応しているが,局所的な計算は行わないため,トレーニングプロセスの信頼性が懸念される。
同様に、アウトソースモデル推論に関連する信頼性の問題もある。
これらの2つの問題は、モデル計算の信頼性問題として要約できる: 特定のアルゴリズム、モデル、入力データに基づいて、他の参加者によって計算された結果が導出されることをどうやって検証できるのか?
この課題に対処するため、検証可能な機械学習(VML)が登場した。
本稿では,ゼロ知識証明に基づく検証可能な機械学習(ZKP-VML)技術に関する総合的な調査を行う。
まず、さまざまな機械学習シナリオに存在する可能性のある検証可能性の問題を分析します。
その後、ZKP-VMLの形式的定義を提供する。
次に、既存の作品の技術的アプローチに基づいて詳細な分析と分類を行う。
最後に、ZKPベースのVML分野における課題と今後の方向性について論じる。
関連論文リスト
- The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Towards a population-informed approach to the definition of data-driven
models for structural dynamics [0.0]
ここでは人口ベーススキームを踏襲し、メタラーニング領域からの2つの異なる機械学習アルゴリズムを用いる。
このアルゴリズムは、従来の機械学習アルゴリズムよりも、関心の量を近似するのが目的のようだ。
論文 参考訳(メタデータ) (2023-07-19T09:45:41Z) - Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions [0.0]
本稿では、説明可能なAI(XAI)の実践に関連する2つの異なる質問について検討する。
この研究では、単一分類器(論理回帰、決定木、LDA、QDA)、異種アンサンブル(AdaBoost、ランダムフォレスト)、シーケンシャルニューラルネットワークなど、さまざまな機械学習モデルを比較した。
LIMEとSHAPの2つの高度なポストホックモデル説明可能性技術を用いて、MLベースのクレジットスコアリングモデルを評価する。
論文 参考訳(メタデータ) (2022-09-19T21:44:42Z) - Uncertainty Estimation in Machine Learning [0.0]
機械学習において、モデルの複雑さと厳密な非線形性は、不確実性評価に深刻な障害となる。
事前トレーニングモデルの最新の例は、数十億のパラメータと半テラバイトのトレーニングデータセットを備えたGenerative Pre-trained Transformer 3である。
論文 参考訳(メタデータ) (2022-06-03T16:11:11Z) - Knowledge Augmented Machine Learning with Applications in Autonomous
Driving: A Survey [37.84106999449108]
この研究は、データ駆動モデルと既存の知識を組み合わせた既存の技術と手法の概要を提供する。
同定されたアプローチは、知識の統合、抽出、整合性に応じて構成される。
特に、自律運転分野における提案手法の適用について述べる。
論文 参考訳(メタデータ) (2022-05-10T07:25:32Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
機械学習の研究は転換点にある。
研究の関心は、高度にパラメータ化されたモデルのパフォーマンス向上から、非常に具体的なタスクへとシフトしている。
このホワイトペーパーは、機械学習研究におけるこの新興分野の紹介と議論を提供する。
論文 参考訳(メタデータ) (2020-12-21T15:07:19Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。