Neighborhood-Aware Neural Architecture Search
- URL: http://arxiv.org/abs/2105.06369v1
- Date: Thu, 13 May 2021 15:56:52 GMT
- Title: Neighborhood-Aware Neural Architecture Search
- Authors: Xiaofang Wang, Shengcao Cao, Mengtian Li, Kris M. Kitani
- Abstract summary: We propose a novel neural architecture search (NAS) method to identify flat-minima architectures in the search space.
Our formulation takes the "flatness" of an architecture into account by aggregating the performance over the neighborhood of this architecture.
Based on our formulation, we propose neighborhood-aware random search (NA-RS) and neighborhood-aware differentiable architecture search (NA-DARTS)
- Score: 43.87465987957761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing neural architecture search (NAS) methods often return an
architecture with good search performance but generalizes poorly to the test
setting. To achieve better generalization, we propose a novel
neighborhood-aware NAS formulation to identify flat-minima architectures in the
search space, with the assumption that flat minima generalize better than sharp
minima. The phrase "flat-minima architecture" refers to architectures whose
performance is stable under small perturbations in the architecture (e.g.,
replacing a convolution with a skip connection). Our formulation takes the
"flatness" of an architecture into account by aggregating the performance over
the neighborhood of this architecture. We demonstrate a principled way to apply
our formulation to existing search algorithms, including sampling-based
algorithms and gradient-based algorithms. To facilitate the application to
gradient-based algorithms, we also propose a differentiable representation for
the neighborhood of architectures. Based on our formulation, we propose
neighborhood-aware random search (NA-RS) and neighborhood-aware differentiable
architecture search (NA-DARTS). Notably, by simply augmenting DARTS with our
formulation, NA-DARTS finds architectures that perform better or on par with
those found by state-of-the-art NAS methods on established benchmarks,
including CIFAR-10, CIFAR-100 and ImageNet.
Related papers
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
Eye movement biometrics have received increasing attention thanks to its high secure identification.
Deep learning (DL) models have been recently successfully applied for eye movement recognition.
DL architecture still is determined by human prior knowledge.
We propose EM-DARTS, a hierarchical differentiable architecture search algorithm to automatically design the DL architecture for eye movement recognition.
arXiv Detail & Related papers (2024-09-22T13:11:08Z) - Efficient Search of Multiple Neural Architectures with Different
Complexities via Importance Sampling [3.759936323189417]
This study focuses on the architecture complexity-aware one-shot NAS that optimize the objective function composed of the weighted sum of two metrics.
The proposed method is applied to the architecture search of convolutional neural networks on the CIAFR-10 and ImageNet datasets.
arXiv Detail & Related papers (2022-07-21T07:06:03Z) - ZARTS: On Zero-order Optimization for Neural Architecture Search [94.41017048659664]
Differentiable architecture search (DARTS) has been a popular one-shot paradigm for NAS due to its high efficiency.
This work turns to zero-order optimization and proposes a novel NAS scheme, called ZARTS, to search without enforcing the above approximation.
In particular, results on 12 benchmarks verify the outstanding robustness of ZARTS, where the performance of DARTS collapses due to its known instability issue.
arXiv Detail & Related papers (2021-10-10T09:35:15Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
Differentiable Neural Architecture Search is one of the most popular NAS methods for its search efficiency and simplicity.
We propose an alternative perturbation-based architecture selection that directly measures each operation's influence on the supernet.
We find that several failure modes of DARTS can be greatly alleviated with the proposed selection method.
arXiv Detail & Related papers (2021-08-10T00:53:39Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z) - Does Unsupervised Architecture Representation Learning Help Neural
Architecture Search? [22.63641173256389]
Existing Neural Architecture Search (NAS) methods either encode neural architectures using discrete encodings that do not scale well, or adopt supervised learning-based methods to jointly learn architecture representations and optimize architecture search on such representations which incurs search bias.
We observe that the structural properties of neural architectures are hard to preserve in the latent space if architecture representation learning and search are coupled, resulting in less effective search performance.
arXiv Detail & Related papers (2020-06-12T04:15:34Z) - Geometry-Aware Gradient Algorithms for Neural Architecture Search [41.943045315986744]
We argue for the study of single-level empirical risk minimization to understand NAS with weight-sharing.
We present a geometry-aware framework that exploits the underlying structure of this optimization to return sparse architectural parameters.
We achieve state-of-the-art accuracy on the latest NAS benchmarks in computer vision.
arXiv Detail & Related papers (2020-04-16T17:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.