論文の概要: Stochastic-Shield: A Probabilistic Approach Towards Training-Free
Adversarial Defense in Quantized CNNs
- arxiv url: http://arxiv.org/abs/2105.06512v1
- Date: Thu, 13 May 2021 18:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-17 12:37:20.030813
- Title: Stochastic-Shield: A Probabilistic Approach Towards Training-Free
Adversarial Defense in Quantized CNNs
- Title(参考訳): Stochastic-Shield:量子CNNにおける学習自由敵防衛に向けた確率論的アプローチ
- Authors: Lorena Qendro, Sangwon Ha, Ren\'e de Jong, Partha Maji
- Abstract要約: 量子ニューラルネットワーク(NN)は、小さなハードウェアプラットフォームにディープラーニングモデルを効率的にデプロイするための一般的な標準である。
再トレーニングやアドホックな微調整の負担を伴わずに,各モジュールを高精度に実現することにより,効率とロバスト性が両立できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantized neural networks (NN) are the common standard to efficiently deploy
deep learning models on tiny hardware platforms. However, we notice that
quantized NNs are as vulnerable to adversarial attacks as the full-precision
models. With the proliferation of neural networks on small devices that we
carry or surround us, there is a need for efficient models without sacrificing
trust in the prediction in presence of malign perturbations. Current mitigation
approaches often need adversarial training or are bypassed when the strength of
adversarial examples is increased.
In this work, we investigate how a probabilistic framework would assist in
overcoming the aforementioned limitations for quantized deep learning models.
We explore Stochastic-Shield: a flexible defense mechanism that leverages input
filtering and a probabilistic deep learning approach materialized via Monte
Carlo Dropout. We show that it is possible to jointly achieve efficiency and
robustness by accurately enabling each module without the burden of
re-retraining or ad hoc fine-tuning.
- Abstract(参考訳): 量子ニューラルネットワーク(NN)は、小さなハードウェアプラットフォームにディープラーニングモデルを効率的にデプロイするための一般的な標準である。
しかし、量子化NNは完全精度モデルと同じくらい敵攻撃に弱いことに気づいた。
私たちが持ち運んだり囲んだりする小さなデバイス上でのニューラルネットワークの拡散により、悪性摂動の存在下での予測に対する信頼を犠牲にすることなく効率的なモデルが必要である。
現在の緩和アプローチは、しばしば敵の訓練を必要とするか、敵の例の強さが増すとバイパスされる。
本研究では,先述した量子化深層学習モデルの制約を克服する上で,確率的フレームワークがいかに役立つかを検討する。
入力フィルタリングとモンテカルロドロップアウトによって実現される確率的ディープラーニングアプローチを活用した,柔軟な防御機構である。
再トレーニングやアドホックな微調整の負担を伴わずに,各モジュールを高精度に実現することにより,効率とロバスト性が両立できることを示す。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
ほとんどの堅牢なトレーニング技術は、摂動入力のモデル精度を改善することを目的としている。
強靭性の代替形態として、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
我々は、現在の対人訓練手法を活用して、トレーニングプロセス中に標的の対人攻撃を発生させる。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-21T22:01:36Z) - Learning Robust Kernel Ensembles with Kernel Average Pooling [3.6540368812166872]
本稿では,階層活性化テンソルのカーネル次元に沿って平均フィルタを適用するニューラルネットワーク構築ブロックであるKernel Average Pooling(KAP)を紹介する。
類似機能を持つカーネルのアンサンブルは、KAPを装備した畳み込みニューラルネットワークにおいて自然に出現し、バックプロパゲーションで訓練されることを示す。
論文 参考訳(メタデータ) (2022-09-30T19:49:14Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness [4.794745827538956]
逆向きに学習したニューラルネットワークは、通常のモデルよりも量子化損失に対して脆弱であることがわかった。
ニューラルネットワークの最適量子化パラメータ設定を選択するために,Lipschitz定数を用いた層ワイド逆アウェア量子化法を提案する。
実験結果から,本手法は,量子化逆学習ニューラルネットワークのロバスト性を効果的かつ効果的に向上できることが示された。
論文 参考訳(メタデータ) (2021-10-23T22:11:30Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
本稿では,ニューラルネットワークの「圧縮可能な部分空間」を訓練する手法を提案する。
構造的・非構造的空間に対する推定時間における微粒な精度・効率のトレードオフを任意に達成するための結果を示す。
我々のアルゴリズムは、可変ビット幅での量子化にまで拡張し、個別に訓練されたネットワークと同等の精度を実現する。
論文 参考訳(メタデータ) (2021-10-08T17:03:34Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
安全クリティカルな機械学習アプリケーションでは、モデルを敵の攻撃から守ることが不可欠である。
意味的に意味のある入力変換に対して、ディープラーニングモデルの証明可能な保証を提供することが重要である。
我々はChernoff-Cramer境界に基づく新しい普遍確率的証明手法を提案する。
論文 参考訳(メタデータ) (2021-09-22T12:46:04Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z) - RAB: Provable Robustness Against Backdoor Attacks [20.702977915926787]
我々は、一般的な脅威モデル、特にバックドアアタックに対して、機械学習モデルの堅牢性を証明することに重点を置いている。
トレーニングモデルをスムースにし,バックドア攻撃に対する堅牢性を証明するための,最初の堅牢なトレーニングプロセスであるRABを提案する。
我々は、さまざまな機械学習(ML)モデルに対する包括的な実験を行い、バックドア攻撃に対する信頼性の高い堅牢性を示す最初のベンチマークを提供する。
論文 参考訳(メタデータ) (2020-03-19T17:05:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。