Multiplexed quantum repeaters based on dual-species trapped-ion systems
- URL: http://arxiv.org/abs/2105.06707v2
- Date: Sat, 26 Feb 2022 02:26:42 GMT
- Title: Multiplexed quantum repeaters based on dual-species trapped-ion systems
- Authors: Prajit Dhara, Norbert M. Linke, Edo Waks, Saikat Guha, Kaushik P.
Seshadreesan
- Abstract summary: Trapped ions form an advanced technology platform for quantum information processing with long qubit coherence times.
These traits make them attractive not only for quantum computing but also for quantum networking.
Dedicated, special-purpose trapped-ion processors in conjunction with suitable interconnecting hardware can be used to form quantum repeaters.
- Score: 0.8819673391477034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trapped ions form an advanced technology platform for quantum information
processing with long qubit coherence times, high-fidelity quantum logic gates,
optically active qubits, and a potential to scale up in size while preserving a
high level of connectivity between qubits. These traits make them attractive
not only for quantum computing but also for quantum networking. Dedicated,
special-purpose trapped-ion processors in conjunction with suitable
interconnecting hardware can be used to form quantum repeaters that enable
high-rate quantum communications between distant trapped-ion quantum computers
in a network. In this regard, hybrid traps with two distinct species of ions,
where one ion species can generate ion-photon entanglement that is useful for
optically interfacing with the network and the other has long memory lifetimes,
useful for qubit storage, have been proposed for entanglement distribution. We
consider an architecture for a repeater based on such dual-species trapped-ion
systems. We propose and analyze a protocol based on spatial and temporal mode
multiplexing for entanglement distribution across a line network of such
repeaters. Our protocol offers enhanced rates compared to rates previously
reported for such repeaters. We determine the ion resources required at the
repeaters to attain the enhanced rates, and the best rates attainable when
constraints are placed on the number of repeaters and the number of ions per
repeater. Our results bolster the case for near-term trapped-ion systems as
quantum repeaters for long-distance quantum communications.
Related papers
- Realization of a crosstalk-free multi-ion node for long-distance quantum networking [0.0]
Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes.
In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits.
We report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node.
arXiv Detail & Related papers (2024-05-22T05:58:37Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Backward propagating quantum repeater protocol with multiple quantum
memories [0.0]
We propose a quantum repeater protocol based on backward propagating photon emission and absorption.
It is applicable to various physical systems and opens up the possibility of high-speed high-fidelity quantum networks.
arXiv Detail & Related papers (2022-05-09T12:42:51Z) - Exact rate analysis for quantum repeaters with imperfect memories and
entanglement swapping as soon as possible [0.0]
We present an exact rate analysis for a secret key that can be shared among two parties employing a linear quantum repeater chain.
We consider additional tools and parameters such as memory cut-offs, multiplexing, initial state and swapping gate fidelities.
arXiv Detail & Related papers (2022-03-19T12:55:56Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Multiplexed telecom-band quantum networking with atom arrays in optical
cavities [0.3499870393443268]
We propose a platform for quantum processors comprising neutral atom arrays with telecom-band photons in a multiplexed network architecture.
The use of a large atom array instead of a single atom mitigates the deleterious effects of two-way communication and improves the entanglement rate between two nodes by nearly two orders of magnitude.
arXiv Detail & Related papers (2021-07-09T15:05:57Z) - Experimental demonstration of memory-enhanced scaling for entanglement
connection of quantum repeater segments [13.78819436405072]
The quantum repeater protocol is a promising approach to implement long-distance quantum communication and large-scale quantum networks.
Here we report an experiment which realizes efficient connection of two quantum repeater segments via on-demand entanglement swapping.
The experimental realization of entanglement connection of two quantum repeater segments with an efficient memory-enhanced scaling demonstrates a key advantage of the quantum repeater protocol.
arXiv Detail & Related papers (2021-01-21T10:43:47Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.