Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection
- URL: http://arxiv.org/abs/2309.12638v1
- Date: Fri, 22 Sep 2023 06:09:48 GMT
- Title: Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection
- Authors: Basma Jumaa Saleh, Zaid Omar, Vikrant Bhateja, Lila Iznita Izhar
- Abstract summary: This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
- Score: 0.24578723416255752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During the COVID-19 pandemic, medical imaging techniques like computed
tomography (CT) scans have demonstrated effectiveness in combating the rapid
spread of the virus. Therefore, it is crucial to conduct research on
computerized models for the detection of COVID-19 using CT imaging. A novel
processing method has been developed, utilizing radiomic features, to assist in
the CT-based diagnosis of COVID-19. Given the lower specificity of traditional
features in distinguishing between different causes of pulmonary diseases, the
objective of this study is to develop a CT-based radiomics framework for the
differentiation of COVID-19 from other lung diseases. The model is designed to
focus on outlining COVID-19 lesions, as traditional features often lack
specificity in this aspect. The model categorizes images into three classes:
COVID-19, non-COVID-19, or normal. It employs enhancement auto-segmentation
principles using intensity dark channel prior (IDCP) and deep neural networks
(ALS-IDCP-DNN) within a defined range of analysis thresholds. A publicly
available dataset comprising COVID-19, normal, and non-COVID-19 classes was
utilized to validate the proposed model's effectiveness. The best performing
classification model, Residual Neural Network with 50 layers (Resnet-50),
attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%,
98%, and 98% respectively. These results demonstrate the capability of our
model to accurately classify COVID-19 images, which could aid radiologists in
diagnosing suspected COVID-19 patients. Furthermore, our model's performance
surpasses that of more than 10 current state-of-the-art studies conducted on
the same dataset.
Related papers
- A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection [61.04937460198252]
We construct the X-ray imaging data from 2874 patients with four classes: normal, bacterial pneumonia, non-COVID-19 viral pneumonia, and COVID-19.
To identify COVID-19, we propose a Focal Loss Based Neural Ensemble Network (FLANNEL)
FLANNEL consistently outperforms baseline models on COVID-19 identification task in all metrics.
arXiv Detail & Related papers (2020-10-30T03:17:31Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.