論文の概要: Efficient Spiking Neural Networks with Radix Encoding
- arxiv url: http://arxiv.org/abs/2105.06943v2
- Date: Thu, 2 Nov 2023 15:10:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 18:46:15.333392
- Title: Efficient Spiking Neural Networks with Radix Encoding
- Title(参考訳): radixエンコードを用いた効率的なスパイクニューラルネットワーク
- Authors: Zhehui Wang, Xiaozhe Gu, Rick Goh, Joey Tianyi Zhou, Tao Luo
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワーク(ANN)よりもレイテンシとエネルギー効率に利点がある
本稿では,超短スパイク列車を用いたSNNのラジックス符号化を提案する。
実験の結果,VGG-16ネットワークアーキテクチャとCIFAR-10データセットの最先端技術と比較すると,精度は25倍,精度は1.1%向上した。
- 参考スコア(独自算出の注目度): 35.79325964767678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) have advantages in latency and energy
efficiency over traditional artificial neural networks (ANNs) due to its
event-driven computation mechanism and replacement of energy-consuming weight
multiplications with additions. However, in order to reach accuracy of its ANN
counterpart, it usually requires long spike trains to ensure the accuracy.
Traditionally, a spike train needs around one thousand time steps to approach
similar accuracy as its ANN counterpart. This offsets the computation
efficiency brought by SNNs because longer spike trains mean a larger number of
operations and longer latency. In this paper, we propose a radix encoded SNN
with ultra-short spike trains. In the new model, the spike train takes less
than ten time steps. Experiments show that our method demonstrates 25X speedup
and 1.1% increment on accuracy, compared with the state-of-the-art work on
VGG-16 network architecture and CIFAR-10 dataset.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、イベント駆動型計算機構とエネルギー消費重量乗算の代替により、従来の人工知能ニューラルネットワーク(ANN)よりもレイテンシとエネルギー効率の利点がある。
しかし、ANNの精度に到達するためには通常、正確性を確保するために長いスパイク列車を必要とする。
伝統的に、スパイク列車はANNと同様の精度にアプローチするために約1000のタイムステップを必要とする。
これは、長いスパイク列車はより多くの操作と長いレイテンシを意味するため、snsによってもたらされる計算効率を相殺する。
本稿では,超短スパイク列車を用いたSNNのラジックス符号化を提案する。
新しいモデルでは、スパイク列車は10時間足らずで走行する。
実験の結果,VGG-16ネットワークアーキテクチャとCIFAR-10データセットの最先端技術と比較すると,精度は25倍,精度は1.1%向上した。
関連論文リスト
- Scaling Spike-driven Transformer with Efficient Spike Firing Approximation Training [17.193023656793464]
脳にインスパイアされたスパイキングニューラルネットワーク(SNN)の野望は、従来のニューラルネットワーク(ANN)に代わる低消費電力な代替手段になることである。
この作業は、SNNとANNのパフォーマンスギャップと、SNNの高トレーニングコストという、このビジョンを実現する上での2つの大きな課題に対処する。
本研究では,2次発火機構によるスパイクニューロンの固有の欠陥を同定し,整数学習とスパイク駆動推論を用いたスパイクフィリング近似(SFA)法を提案する。
論文 参考訳(メタデータ) (2024-11-25T03:05:41Z) - Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes [19.85338979292052]
スパイキングニューラルネットワーク(SNN)は低消費電力と時間情報処理の特徴的な特徴から注目されている。
ANN-SNN変換は、SNNに適用するための最も一般的な訓練方法であり、変換されたSNNが大規模データセット上でANNに匹敵するパフォーマンスを達成することを確実にする。
本稿では、異なる変換誤差を評価してこれらの誤りを除去する代わりに、実際のSNN発射速度と所望のSNN発射速度のずれ度を測定するためにオフセットスパイクを定義する。
論文 参考訳(メタデータ) (2023-02-21T14:10:56Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Training Energy-Efficient Deep Spiking Neural Networks with Single-Spike
Hybrid Input Encoding [5.725845886457027]
スパイキングニューラルネットワーク(SNN)は、イベント駆動型ニューロモルフィックハードウェアにおいて高い計算効率を提供する。
SNNは、非効率な入力符号化とトレーニング技術により、高い推論遅延に悩まされる。
本稿では低遅延エネルギー効率SNNのためのトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-26T06:16:40Z) - Kernel Based Progressive Distillation for Adder Neural Networks [71.731127378807]
追加のみを含むAdder Neural Networks(ANN)は、エネルギー消費の少ないディープニューラルネットワークを新たに開発する方法を提供する。
すべての畳み込みフィルタを加算フィルタで置き換える場合、精度の低下がある。
本稿では,トレーニング可能なパラメータを増大させることなく,ANNの性能を向上するための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-28T03:29:19Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。