RIDnet: Radiologist-Inspired Deep Neural Network for Low-dose CT
Denoising
- URL: http://arxiv.org/abs/2105.07146v1
- Date: Sat, 15 May 2021 05:59:01 GMT
- Title: RIDnet: Radiologist-Inspired Deep Neural Network for Low-dose CT
Denoising
- Authors: Kecheng Chen, Jiayu Sun, Jiang Shen, Jixiang Luo, Xinyu Zhang, Xuelin
Pan, Dongsheng Wu, Yue Zhao, Miguel Bento, Yazhou Ren and Xiaorong Pu
- Abstract summary: Low-dose computed tomography (LDCT) has been widely adopted in the early screening of lung cancer and COVID-19.
LDCT images inevitably suffer from the degradation problem caused by complex noises.
We propose a novel deep learning model named radiologist-inspired deep denoising network (RIDnet) to imitate the workflow of a radiologist reading LDCT images.
- Score: 10.101822678034393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Being low-level radiation exposure and less harmful to health, low-dose
computed tomography (LDCT) has been widely adopted in the early screening of
lung cancer and COVID-19. LDCT images inevitably suffer from the degradation
problem caused by complex noises. It was reported that, compared with
commercial iterative reconstruction methods, deep learning (DL)-based LDCT
denoising methods using convolutional neural network (CNN) achieved competitive
performance. Most existing DL-based methods focus on the local information
extracted by CNN, while ignoring both explicit non-local and context
information (which are leveraged by radiologists). To address this issue, we
propose a novel deep learning model named radiologist-inspired deep denoising
network (RIDnet) to imitate the workflow of a radiologist reading LDCT images.
Concretely, the proposed model explicitly integrates all the local, non-local
and context information rather than local information only. Our
radiologist-inspired model is potentially favoured by radiologists as a
familiar workflow. A double-blind reader study on a public clinical dataset
shows that, compared with state-of-the-art methods, our proposed model achieves
the most impressive performance in terms of the structural fidelity, the noise
suppression and the overall score. As a physicians-inspired model, RIDnet gives
a new research roadmap that takes into account the behavior of physicians when
designing decision support tools for assisting clinical diagnosis. Models and
code are available at https://github.com/tonyckc/RIDnet_demo.
Related papers
- Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Cross-domain Denoising for Low-dose Multi-frame Spiral Computed Tomography [20.463308418655526]
X-ray exposure raises concerns about potential health risks such as cancer.
The desire for lower radiation doses has driven researchers to improve reconstruction quality.
This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners.
arXiv Detail & Related papers (2023-04-21T09:30:22Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - Localizing the Recurrent Laryngeal Nerve via Ultrasound with a Bayesian
Shape Framework [65.19784967388934]
Tumor infiltration of the recurrent laryngeal nerve (RLN) is a contraindication for robotic thyroidectomy and can be difficult to detect via standard laryngoscopy.
We propose a knowledge-driven framework for RLN localization, mimicking the standard approach surgeons take to identify the RLN according to its surrounding organs.
Experimental results indicate that the proposed method achieves superior hit rates and substantially smaller distance errors compared with state-of-the-art methods.
arXiv Detail & Related papers (2022-06-30T13:04:42Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - DU-GAN: Generative Adversarial Networks with Dual-Domain U-Net Based
Discriminators for Low-Dose CT Denoising [22.351540738281265]
Deep learning techniques have been introduced to improve the image quality of LDCT images through denoising.
This paper proposes a novel method, termed DU-GAN, which leverages U-Net based discriminators in the GANs framework to learn both global and local difference between the denoised and normal-dose images.
arXiv Detail & Related papers (2021-08-24T14:37:46Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - No-reference denoising of low-dose CT projections [2.7716102039510564]
Low-dose computed tomography (LDCT) became a clear trend in radiology with an aspiration to refrain from delivering excessive X-ray radiation to the patients.
The reduction of the radiation dose decreases the risks to the patients but raises the noise level, affecting the quality of the images and their ultimate diagnostic value.
One mitigation option is to consider pairs of low-dose and high-dose CT projections to train a denoising model using deep learning algorithms; however, such pairs are rarely available in practice.
In this paper, we present a new self-supervised method for CT denoising. Unlike existing self-supervised
arXiv Detail & Related papers (2021-02-03T13:51:33Z) - Noise Conscious Training of Non Local Neural Network powered by Self
Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [20.965610734723636]
Deep learning-based technique has emerged as a dominant method for low dose CT(LDCT) denoising.
In this study, we propose a novel convolutional module as the first attempt to utilize neighborhood similarity of CT images for denoising tasks.
Next, we moved towards the problem of non-stationarity of CT noise and introduced a new noise aware mean square error loss for LDCT denoising.
arXiv Detail & Related papers (2020-11-11T10:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.