論文の概要: A brain basis of dynamical intelligence for AI and computational
neuroscience
- arxiv url: http://arxiv.org/abs/2105.07284v1
- Date: Sat, 15 May 2021 19:49:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-19 08:04:57.276373
- Title: A brain basis of dynamical intelligence for AI and computational
neuroscience
- Title(参考訳): AIと計算神経科学のための動的知能の脳基盤
- Authors: Joseph D. Monaco, Kanaka Rajan, Grace M. Hwang
- Abstract要約: より多くの脳のような能力は、新しい理論、モデル、および人工学習システムを設計する方法を要求するかもしれない。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deep neural nets of modern artificial intelligence (AI) have not achieved
defining features of biological intelligence, including abstraction, causal
learning, and energy-efficiency. While scaling to larger models has delivered
performance improvements for current applications, more brain-like capacities
may demand new theories, models, and methods for designing artificial learning
systems. Here, we argue that this opportunity to reassess insights from the
brain should stimulate cooperation between AI research and theory-driven
computational neuroscience (CN). To motivate a brain basis of neural
computation, we present a dynamical view of intelligence from which we
elaborate concepts of sparsity in network structure, temporal dynamics, and
interactive learning. In particular, we suggest that temporal dynamics, as
expressed through neural synchrony, nested oscillations, and flexible
sequences, provide a rich computational layer for reading and updating
hierarchical models distributed in long-term memory networks. Moreover,
embracing agent-centered paradigms in AI and CN will accelerate our
understanding of the complex dynamics and behaviors that build useful world
models. A convergence of AI/CN theories and objectives will reveal dynamical
principles of intelligence for brains and engineered learning systems. This
article was inspired by our symposium on dynamical neuroscience and machine
learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
- Abstract(参考訳): 現代の人工知能(AI)の深いニューラルネットは、抽象化、因果学習、エネルギー効率など、生物学的知性の定義的な特徴を達成できていない。
より大きなモデルへのスケーリングは、現在のアプリケーションの性能改善をもたらしたが、より脳的な能力は、新しい理論、モデル、そして機械学習システムを設計するための方法を必要とする可能性がある。
ここでは、脳からの洞察を再評価するこの機会は、ai研究と理論駆動計算神経科学(cn)の協力を促進するべきであると論じる。
神経計算の脳基盤を動機づけるために、我々は、ネットワーク構造、時間力学、対話的学習における空間性の概念を精査したインテリジェンスの動的視点を示す。
特に,神経同期,ネスト振動,フレキシブルシーケンスによって表現される時間ダイナミクスは,長期記憶ネットワークに分散した階層モデルを読み取って更新するためのリッチな計算層を提供することが示唆された。
さらに、AIとCNにエージェント中心のパラダイムを導入することで、有用な世界モデルを構築する複雑なダイナミクスや振る舞いの理解が加速します。
AI/CN理論と目的の収束は、脳と工学的な学習システムに対する知性の動的な原則を明らかにする。
本稿は,第6回US/NIH BRAIN Initiative Investigators Meetingにおける動的神経科学と機械学習に関するシンポジウムに触発されたものです。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
我々は,ネットワーク相互作用から生じる機能を明らかにする上で,計算モデルが重要なツールであると主張している。
ここでは、スパイキングニューロン、統合ニューロン、発火ニューロンを含むいくつかのモデルのクラスについてレビューする。
これらの研究は、人工知能アルゴリズムの今後の発展と、脳のプロセスの理解の検証に役立つことを願っている。
論文 参考訳(メタデータ) (2022-03-29T10:28:01Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
軸-体性および軸-体性シナプスを模擬した神経接続概念を導入する。
我々は,大規模ASRモデルの生物学的に現実的な実装によって,競争性能が向上できることを初めて実証した。
論文 参考訳(メタデータ) (2021-10-04T21:24:10Z) - A Neural Dynamic Model based on Activation Diffusion and a
Micro-Explanation for Cognitive Operations [4.416484585765028]
記憶の神経機構は、人工知能における表現の問題と非常に密接な関係を持っている。
脳内のニューロンのネットワークとその情報処理のシミュレーションを行う計算モデルが提案された。
論文 参考訳(メタデータ) (2020-11-27T01:34:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。