Frequency measurements beyond the Heisenberg time-energy limit with a
single atom
- URL: http://arxiv.org/abs/2105.08536v2
- Date: Sat, 5 Jun 2021 02:23:05 GMT
- Title: Frequency measurements beyond the Heisenberg time-energy limit with a
single atom
- Authors: Liam P. McGuinness
- Abstract summary: Heisenberg time-energy relation prevents determination of an atomic transition to better than the inverse of the measurement time.
Here we demonstrate a frequency estimation technique that provides an uncertainty orders of magnitude below the Heisenberg limit with a single atom.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Heisenberg time-energy relation prevents determination of an atomic
transition to better than the inverse of the measurement time. The relation
generally applies to frequency estimation of a near-resonant field [1-3], since
information on the field frequency can be used to infer the atomic transition
[4, 5]. Here we demonstrate a frequency estimation technique that provides an
uncertainty orders of magnitude below the Heisenberg limit with a single atom.
With access to $N$ atoms, we propose a fundamental uncertainty limit improving
as $\sqrt{N}$, regardless of whether entanglement is employed. We describe
implementation of the quantum fourier transform to estimate an unknown
frequency without using entanglement. A comparison to classical algorithms
severely limits the benefit that quantum algorithms provide for frequency
estimation and that entanglement provides to quantum sensing in general.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Achieving the Heisenberg limit with Dicke states in noisy quantum
metrology [0.0]
We show how Dicke states can be used to surpass the standard quantum limit and achieve the Heisenberg limit in open quantum systems.
The system we study has qubits symmetrically coupled to a resonator and our objective is to estimate the coupling between the qubits and the resonator.
We show that when the system is to a Dicke state with an optimal excitation number one can go beyond the standard quantum limit and achieve the Heisenberg limit even for finite values of the decays on the qubit and the resonator.
arXiv Detail & Related papers (2023-09-21T18:21:10Z) - Atomic clock locking with Bayesian quantum parameter estimation: scheme and experiment [2.7845103236877615]
Atomic clocks are crucial for science and technology, but their sensitivity is often restricted by the standard quantum limit.
We design an adaptive Bayesian quantum frequency estimation protocol that approaches the Heisenberg scaling.
We achieve robust and high-precision closed-loop locking of the cold-atom CPT clock.
arXiv Detail & Related papers (2023-06-11T07:11:50Z) - Continuous dynamical decoupling of optical $^{171}$Yb$^{+}$ qudits with
radiofrequency fields [45.04975285107723]
We experimentally achieve a gain in the efficiency of realizing quantum algorithms with qudits.
Our results are a step towards the realization of qudit-based algorithms using trapped ions.
arXiv Detail & Related papers (2023-05-10T11:52:12Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Rapid Quantum Squeezing by Jumping the Harmonic Oscillator Frequency [2.229264819097804]
We create squeezed states of atomic motion by sudden changes of the harmonic oscillation frequency of atoms in an optical lattice.
Our results can speed up quantum gates and enable quantum sensing and quantum information processing in noisy environments.
arXiv Detail & Related papers (2021-10-01T08:18:29Z) - Heisenberg-limited Frequency Estimation via Driving through Quantum
Phase Transitions [1.4985830312023636]
We propose a quantum Ramsey interferometry to realize high-precision frequency estimation in spin-1 Bose-Einstein condensate.
Our scheme does not require single-particle resolved detection and is within the reach of current experiment techniques.
arXiv Detail & Related papers (2021-08-30T11:28:16Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Heisenberg-Limited Waveform Estimation with Solid-State Spins in Diamond [15.419555338671772]
Heisenberg limit in arbitrary waveform estimation is quite different with parameter estimation.
It is still a non-trivial challenge to generate a large number of exotic quantum entangled states to achieve this quantum limit.
This work provides an essential step towards realizing quantum-enhanced structure recognition in a continuous space and time.
arXiv Detail & Related papers (2021-05-13T01:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.