A Quantum Repeater Node Demonstrating Unconditionally Secure Key
Distribution
- URL: http://arxiv.org/abs/2105.08691v1
- Date: Tue, 18 May 2021 17:22:52 GMT
- Title: A Quantum Repeater Node Demonstrating Unconditionally Secure Key
Distribution
- Authors: S. Langenfeld, P. Thomas, O. Morin, and G. Rempe
- Abstract summary: Long-distance quantum communication requires quantum repeaters to overcome photon loss in optical fibers.
Here we demonstrate a repeater node with two memory atoms in an optical cavity.
We demonstrate scaling advantage of the key rate, increase the effective attenuation length by a factor of two, and beat the error-rate threshold of 11% for unconditionally secure communication.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-distance quantum communication requires quantum repeaters to overcome
photon loss in optical fibers. Here we demonstrate a repeater node with two
memory atoms in an optical cavity. Both atoms are individually and repeatedly
entangled with photons that are distributed until each communication partner
has independently received one of them. An atomic Bell-state measurement
followed by classical communication serves to establish a key. We demonstrate
scaling advantage of the key rate, increase the effective attenuation length by
a factor of two, and beat the error-rate threshold of 11\% for unconditionally
secure communication, the corner stones for repeater-based quantum networks.
Related papers
- Realization of a crosstalk-free multi-ion node for long-distance quantum networking [0.0]
Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes.
In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits.
We report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node.
arXiv Detail & Related papers (2024-05-22T05:58:37Z) - One-Way Quantum Repeater with Rare-Earth-Ions Doped in Solids [0.0]
One-way quantum repeaters eliminate the need for two-way classical communications.
Rare-earth-ions doped in solids and coupled with nano-cavity can be used to generate photonic cluster state efficiently.
arXiv Detail & Related papers (2024-04-13T21:08:18Z) - Quantum repeater node with free-space coupled trapped ions [0.0]
We demonstrate the implementation of a quantum repeater cell, based on two free-space coupled $40$Ca$+$ ions in the same trap that act as quantum memories.
We demonstrate the asynchronous generation of atom-photon and photon-photon entanglement by controlled emission of single photons from the individually addressed ions and entanglement swapping.
arXiv Detail & Related papers (2023-12-22T16:27:04Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Entangling single atoms over 33 km telecom fibre [2.527878267188811]
We present results demonstrating heralded entanglement between two independent, remote single-atom quantum memories generated over fibre links with a total length up to 33 km.
The presented work represents a milestone towards the realization of efficient quantum network links.
arXiv Detail & Related papers (2021-11-30T16:13:40Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z) - A Frequency-Multiplexed Coherent Electro-Optic Memory in Rare Earth
Doped Nanoparticles [94.37521840642141]
Quantum memories for light are essential components in quantum technologies like long-distance quantum communication and distributed quantum computing.
Recent studies have shown that long optical and spin coherence lifetimes can be observed in rare earth doped nanoparticles.
We report on coherent light storage in Eu$3+$:Y$$O$_3$ nanoparticles using the Stark Echo Modulation Memory (SEMM) quantum protocol.
arXiv Detail & Related papers (2020-06-17T13:25:54Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.