Quantum repeater node with free-space coupled trapped ions
- URL: http://arxiv.org/abs/2312.14805v3
- Date: Tue, 3 Sep 2024 14:55:12 GMT
- Title: Quantum repeater node with free-space coupled trapped ions
- Authors: Max Bergerhoff, Omar Elshehy, Stephan Kucera, Matthias Kreis, Jürgen Eschner,
- Abstract summary: We demonstrate the implementation of a quantum repeater cell, based on two free-space coupled $40$Ca$+$ ions in the same trap that act as quantum memories.
We demonstrate the asynchronous generation of atom-photon and photon-photon entanglement by controlled emission of single photons from the individually addressed ions and entanglement swapping.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum repeater cell is a basic building block for a quantum network, as it allows to overcome the distance limitations due to unavoidable fiber loss in direct transmission. We demonstrate the implementation of a quantum repeater cell, based on two free-space coupled $^{40}$Ca$^+$ ions in the same trap that act as quantum memories. We demonstrate the asynchronous generation of atom-photon and photon-photon entanglement by controlled emission of single photons from the individually addressed ions and entanglement swapping. We discuss the fidelity as well as the scaling of the generated rate.
Related papers
- Realization of a crosstalk-free multi-ion node for long-distance quantum networking [0.0]
Trapped atomic ions constitute one of the leading physical platforms for building the quantum repeater nodes.
In a long-distance trapped-ion quantum network, it is essential to have crosstalk-free dual-type qubits.
We report the first experimental implementation of a telecom-compatible and crosstalk-free quantum network node.
arXiv Detail & Related papers (2024-05-22T05:58:37Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Purcell enhancement of single-photon emitters in silicon [68.8204255655161]
Individual spins that are coupled to telecommunication photons offer unique promise for distributed quantum information processing.
We implement such an interface by integrating erbium dopants into a nanophotonic silicon resonator.
We observe optical Rabi oscillations and single-photon emission with a 78-fold Purcell enhancement.
arXiv Detail & Related papers (2023-01-18T19:38:38Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - A telecom-wavelength quantum repeater node based on a trapped-ion
processor [0.0]
A quantum repeater node is presented based on trapped ions that act as single photon emitters, quantum memories and an elementary quantum processor.
The node's ability to establish entanglement across two 25 km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated.
arXiv Detail & Related papers (2022-10-11T12:55:22Z) - Routing Single Photons from a Trapped Ion Using a Photonic Integrated
Circuit [0.0]
Future quantum networks based on trapped ions will require a scalable way to route photons between different nodes.
We demonstrate the routing of single photons from a trapped ion using a photonic integrated circuit.
arXiv Detail & Related papers (2022-03-15T16:42:39Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - A Quantum Repeater Node Demonstrating Unconditionally Secure Key
Distribution [0.0]
Long-distance quantum communication requires quantum repeaters to overcome photon loss in optical fibers.
Here we demonstrate a repeater node with two memory atoms in an optical cavity.
We demonstrate scaling advantage of the key rate, increase the effective attenuation length by a factor of two, and beat the error-rate threshold of 11% for unconditionally secure communication.
arXiv Detail & Related papers (2021-05-18T17:22:52Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Heralded non-destructive quantum entangling gate with single-photon
sources [5.881327681338198]
We demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time.
Our results are an important step towards the development of photon-photon quantum logic gates.
arXiv Detail & Related papers (2020-10-28T06:50:23Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.