XCycles Backprojection Acoustic Super-Resolution
- URL: http://arxiv.org/abs/2105.09128v1
- Date: Wed, 19 May 2021 13:43:15 GMT
- Title: XCycles Backprojection Acoustic Super-Resolution
- Authors: Feras Almasri, Jurgen Vandendriessche, Laurent Segers, Bruno da Silva,
An Braeken, Kris Steenhaut, Abdellah Touhafi and Olivier Debeir
- Abstract summary: This work proposes a novel backprojection model architecture for the acoustic image super-resolution problem.
It uses the iterative correction procedure in each cycle to reconstruct the residual error correction for the encoded features in both low- and high-resolution space.
It also contributed to a drastically reduced sub-sampling error produced during the data acquisition.
- Score: 4.022090911982323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computer vision community has paid much attention to the development of
visible image super-resolution (SR) using deep neural networks (DNNs) and has
achieved impressive results. The advancement of non-visible light sensors, such
as acoustic imaging sensors, has attracted much attention, as they allow people
to visualize the intensity of sound waves beyond the visible spectrum. However,
because of the limitations imposed on acquiring acoustic data, new methods for
improving the resolution of the acoustic images are necessary. At this time,
there is no acoustic imaging dataset designed for the SR problem. This work
proposed a novel backprojection model architecture for the acoustic image
super-resolution problem, together with Acoustic Map Imaging VUB-ULB Dataset
(AMIVU). The dataset provides large simulated and real captured images at
different resolutions. The proposed XCycles BackProjection model (XCBP), in
contrast to the feedforward model approach, fully uses the iterative correction
procedure in each cycle to reconstruct the residual error correction for the
encoded features in both low- and high-resolution space. The proposed approach
was evaluated on the dataset and showed high outperformance compared to the
classical interpolation operators and to the recent feedforward
state-of-the-art models. It also contributed to a drastically reduced
sub-sampling error produced during the data acquisition.
Related papers
- Quaternion Wavelet-Conditioned Diffusion Models for Image Super-Resolution [4.307648859471193]
We introduce ResQu, a novel SR framework that integrates a quaternion wavelet preprocessing framework with latent diffusion models.
Our approach enhances the conditioning process by exploiting quaternion wavelet embeddings, which are dynamically integrated at different stages of denoising.
Our method achieves outstanding SR results, outperforming in many cases existing approaches in perceptual quality and standard evaluation metrics.
arXiv Detail & Related papers (2025-05-01T06:17:33Z) - SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
Joint source-channel coding systems (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission.
Existing methods focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality.
We propose SING, a novel framework that formulates the recovery of high-quality images from corrupted reconstructions as an inverse problem.
arXiv Detail & Related papers (2025-03-16T12:32:11Z) - Spatial-and-Frequency-aware Restoration method for Images based on
Diffusion Models [7.947387272047602]
We propose SaFaRI, a spatial-and-frequency-aware diffusion model for Image Restoration (IR)
Our model encourages images to preserve data-fidelity in both the spatial and frequency domains, resulting in enhanced reconstruction quality.
Our thorough evaluation demonstrates that SaFaRI achieves state-of-the-art performance on both the ImageNet datasets and FFHQ datasets.
arXiv Detail & Related papers (2024-01-31T07:11:01Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
We propose a novel approach called the Reconstruct-and-Generate Diffusion Model (RnG)
Our method leverages a reconstructive denoising network to recover the majority of the underlying clean signal.
It employs a diffusion algorithm to generate residual high-frequency details, thereby enhancing visual quality.
arXiv Detail & Related papers (2023-09-19T16:01:20Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - Kernel Adversarial Learning for Real-world Image Super-resolution [23.904933824966605]
We propose a more realistic process to synthesise low-resolution images for real-world image SR by introducing a new Kernel Adversarial Learning Super-resolution framework.
In the proposed framework, degradation kernels and noises are adaptively modelled rather than explicitly specified.
We also propose a high-frequency selective objective and an iterative supervision process to further boost the model SR reconstruction accuracy.
arXiv Detail & Related papers (2021-04-19T01:51:21Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Generalized Octave Convolutions for Learned Multi-Frequency Image
Compression [20.504561050200365]
We propose the first learned multi-frequency image compression and entropy coding approach.
It is based on the recently developed octave convolutions to factorize the latents into high and low frequency (resolution) components.
We show that the proposed generalized octave convolution can improve the performance of other auto-encoder-based computer vision tasks.
arXiv Detail & Related papers (2020-02-24T01:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.