論文の概要: Detection of Emotions in Hindi-English Code Mixed Text Data
- arxiv url: http://arxiv.org/abs/2105.09226v1
- Date: Wed, 19 May 2021 16:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-20 13:50:45.897532
- Title: Detection of Emotions in Hindi-English Code Mixed Text Data
- Title(参考訳): ヒンディー語と英語の混合テキストデータの感情検出
- Authors: Divyansh Singh
- Abstract要約: 近年,ソーシャルネットワークやスマートフォン上でのコミュニケーションにテキストチャットの利用が増加している。
これは特に、英語の語彙で認識されていない単語を含むヒンディー語と英語のコードミキシングされたテキストを使用する。
我々は、これらの混合データから感情を検知し、怒り、恐怖、幸せ、悲しむ人間の感情で文章を分類することに取り組んできた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent times, we have seen an increased use of text chat for communication
on social networks and smartphones. This particularly involves the use of
Hindi-English code-mixed text which contains words which are not recognized in
English vocabulary. We have worked on detecting emotions in these mixed data
and classify the sentences in human emotions which are angry, fear, happy or
sad. We have used state of the art natural language processing models and
compared their performance on the dataset comprising sentences in this mixed
data. The dataset was collected and annotated from sources and then used to
train the models.
- Abstract(参考訳): 近年,ソーシャルネットワークやスマートフォン上でのコミュニケーションにテキストチャットの利用が増加している。
これは特に、英語の語彙で認識されていない単語を含むヒンディー語と英語の混成テキストを使用する。
私たちはこれらの混合データから感情を検出し、怒り、恐怖、幸福、悲しみの感情で文章を分類しました。
我々は, 自然言語処理モデルの現状を利用して, この混合データ中の文からなるデータセットの性能を比較した。
データセットはソースから収集され、アノテートされ、モデルのトレーニングに使用される。
関連論文リスト
- Textualized and Feature-based Models for Compound Multimodal Emotion Recognition in the Wild [45.29814349246784]
マルチモーダルな大言語モデル(LLM)は、異なる非テクストのモダリティからテキストに変換される可能性のある明示的な非言語的手がかりに依存している。
本稿では,ビデオにおける複合マルチモーダルERのテキストと特徴に基づくアプローチの可能性について比較する。
論文 参考訳(メタデータ) (2024-07-17T18:01:25Z) - Multilingual Diversity Improves Vision-Language Representations [66.41030381363244]
このデータセットの事前トレーニングは、ImageNet上で英語のみまたは英語が支配するデータセットを使用してパフォーマンスが向上する。
GeoDEのような地理的に多様なタスクでは、アフリカから得られる最大の利益とともに、すべての地域における改善も観察します。
論文 参考訳(メタデータ) (2024-05-27T08:08:51Z) - Sociolinguistically Informed Interpretability: A Case Study on Hinglish
Emotion Classification [8.010713141364752]
ヒングリッシュ感情分類データセットにおける3つのPLM間の感情予測に対する言語の影響について検討した。
モデルが言語選択と感情表現の関連を学習していることが分かりました。
事前トレーニングにコードミキシングされたデータが存在することで、タスク固有のデータが不足している場合の学習が増大する可能性がある。
論文 参考訳(メタデータ) (2024-02-05T16:05:32Z) - Learning from Emotions, Demographic Information and Implicit User
Feedback in Task-Oriented Document-Grounded Dialogues [59.516187851808375]
FEDIは、人口統計情報、ユーザ感情、暗黙のフィードバックを付加したタスク指向文書地上対話のための最初の英語対話データセットである。
FLAN-T5, GPT-2, LLaMA-2 を用いて行った実験から,これらのデータにより,タスク完了と実際の応答の整合性,ユーザの受容性が改善される可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-17T14:52:26Z) - Learning From Free-Text Human Feedback -- Collect New Datasets Or Extend
Existing Ones? [57.16050211534735]
一般的な対話データセットにおける自由文フィードバックのタイプと頻度について検討する。
この結果から, エラータイプ, ユーザ応答タイプ, それらの関係性など, 調査したデータセットの構成に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2023-10-24T12:01:11Z) - Prompting Multilingual Large Language Models to Generate Code-Mixed
Texts: The Case of South East Asian Languages [47.78634360870564]
東南アジア7言語(SEA)のコードミキシングデータ生成のための多言語モデルの構築について検討する。
BLOOMZのような多言語学習モデルでは、異なる言語からフレーズや節でテキストを生成できないことが判明した。
ChatGPTは、コード混合テキストの生成において矛盾する機能を示しており、そのパフォーマンスはプロンプトテンプレートと言語ペアリングによって異なる。
論文 参考訳(メタデータ) (2023-03-23T18:16:30Z) - ReDDIT: Regret Detection and Domain Identification from Text [62.997667081978825]
本稿では,Redditテキストのデータセットを,Regret by Action,Regret by Inaction,No Regretの3つのクラスに分類した。
以上の結果から,Reddit利用者は過去の行動,特に関係領域における後悔を表明しがちであることがわかった。
論文 参考訳(メタデータ) (2022-12-14T23:41:57Z) - Language Identification of Hindi-English tweets using code-mixed BERT [0.0]
この研究は、ヒンディー語-英語-ウルドゥー語混成テキストのデータ収集を言語事前学習に利用し、ヒンディー語-英語混成テキストはその後の単語レベルの言語分類に利用している。
その結果、コードミックスデータ上で事前学習された表現は、モノリンガルデータによるより良い結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2021-07-02T17:51:36Z) - Role of Artificial Intelligence in Detection of Hateful Speech for
Hinglish Data on Social Media [1.8899300124593648]
ヒンディー語と英語のコードミックスデータ(Hinglish)の流行は、世界中の都市人口のほとんどで増加しています。
ほとんどのソーシャルネットワークプラットフォームが展開するヘイトスピーチ検出アルゴリズムは、これらのコード混合言語に投稿された不快で虐待的なコンテンツをフィルタリングできない。
非構造化コードミックスHinglish言語の効率的な検出方法を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:02:28Z) - Towards Emotion Recognition in Hindi-English Code-Mixed Data: A
Transformer Based Approach [0.0]
感情検出のためのラベル付きhinglishデータセットを提案する。
ヒンディー語と英語の混成ツイートの感情を検出するための深層学習に基づくアプローチに注目した。
論文 参考訳(メタデータ) (2021-02-19T14:07:20Z) - NUIG-Shubhanker@Dravidian-CodeMix-FIRE2020: Sentiment Analysis of
Code-Mixed Dravidian text using XLNet [0.0]
ソーシャルメディアは多言語社会に浸透してきたが、その多くは英語をコミュニケーションの言語として好んでいる。
会話中に文化的な言語と英語を混ぜることで、多言語データが多くなり、今日の世界で利用できるこのコード混在データと呼ぶのは自然なことです。
このようなデータを用いた下流NLPタスクは、複数の言語にまたがるセマンティックな性質のため、難しい。
本稿では,自動回帰XLNetモデルを用いて,タミル・イングリッシュとマラヤラム・イングリッシュ・データセットの感情分析を行う。
論文 参考訳(メタデータ) (2020-10-15T14:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。