Towards a Sample Efficient Reinforcement Learning Pipeline for Vision
Based Robotics
- URL: http://arxiv.org/abs/2105.09719v1
- Date: Thu, 20 May 2021 13:13:01 GMT
- Title: Towards a Sample Efficient Reinforcement Learning Pipeline for Vision
Based Robotics
- Authors: Maxence Mahe, Pierre Belamri, Jesus Bujalance Martin
- Abstract summary: We study how to limit the time taken for training a robotic arm to reach a ball from scratch by assembling a pipeline as efficient as possible.
The pipeline is divided into two parts: the first one is to capture the relevant information from the RGB video with a Computer Vision algorithm.
The second one studies how to train faster a Deep Reinforcement Learning algorithm in order to make the robotic arm reach the target in front of him.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Reinforcement learning holds the guarantee of empowering self-ruling
robots to master enormous collections of conduct abilities with negligible
human mediation. The improvements brought by this technique enables robots to
perform difficult tasks such as grabbing or reaching targets. Nevertheless, the
training process is still time consuming and tedious especially when learning
policies only with RGB camera information. This way of learning is capital to
transfer the task from simulation to the real world since the only external
source of information for the robot in real life is video. In this paper, we
study how to limit the time taken for training a robotic arm with 6 Degrees Of
Freedom (DOF) to reach a ball from scratch by assembling a pipeline as
efficient as possible. The pipeline is divided into two parts: the first one is
to capture the relevant information from the RGB video with a Computer Vision
algorithm. The second one studies how to train faster a Deep Reinforcement
Learning algorithm in order to make the robotic arm reach the target in front
of him. Follow this link to find videos and plots in higher resolution:
\url{https://drive.google.com/drive/folders/1_lRlDSoPzd_GTcVrxNip10o_lm-_DPdn?usp=sharing}
Related papers
- SPIRE: Synergistic Planning, Imitation, and Reinforcement Learning for Long-Horizon Manipulation [58.14969377419633]
We propose spire, a system that decomposes tasks into smaller learning subproblems and second combines imitation and reinforcement learning to maximize their strengths.
We find that spire outperforms prior approaches that integrate imitation learning, reinforcement learning, and planning by 35% to 50% in average task performance.
arXiv Detail & Related papers (2024-10-23T17:42:07Z) - Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers [36.497624484863785]
We introduce Vid2Robot, an end-to-end video-conditioned policy that takes human videos demonstrating manipulation tasks as input and produces robot actions.
Our model is trained with a large dataset of prompt video-robot trajectory pairs to learn unified representations of human and robot actions from videos.
We evaluate Vid2Robot on real-world robots and observe over 20% improvement over BC-Z when using human prompt videos.
arXiv Detail & Related papers (2024-03-19T17:47:37Z) - Robotic Offline RL from Internet Videos via Value-Function Pre-Training [67.44673316943475]
We develop a system for leveraging large-scale human video datasets in robotic offline RL.
We show that value learning on video datasets learns representations more conducive to downstream robotic offline RL than other approaches.
arXiv Detail & Related papers (2023-09-22T17:59:14Z) - Exploring Visual Pre-training for Robot Manipulation: Datasets, Models
and Methods [14.780597545674157]
We investigate the effects of visual pre-training strategies on robot manipulation tasks from three fundamental perspectives.
We propose a visual pre-training scheme for robot manipulation termed Vi-PRoM, which combines self-supervised learning and supervised learning.
arXiv Detail & Related papers (2023-08-07T14:24:52Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Scaling Robot Learning with Semantically Imagined Experience [21.361979238427722]
Recent advances in robot learning have shown promise in enabling robots to perform manipulation tasks.
One of the key contributing factors to this progress is the scale of robot data used to train the models.
We propose an alternative route and leverage text-to-image foundation models widely used in computer vision and natural language processing.
arXiv Detail & Related papers (2023-02-22T18:47:51Z) - Human-to-Robot Imitation in the Wild [50.49660984318492]
We propose an efficient one-shot robot learning algorithm, centered around learning from a third-person perspective.
We show one-shot generalization and success in real-world settings, including 20 different manipulation tasks in the wild.
arXiv Detail & Related papers (2022-07-19T17:59:59Z) - DexMV: Imitation Learning for Dexterous Manipulation from Human Videos [11.470141313103465]
We propose a new platform and pipeline, DexMV, for imitation learning to bridge the gap between computer vision and robot learning.
We design a platform with: (i) a simulation system for complex dexterous manipulation tasks with a multi-finger robot hand and (ii) a computer vision system to record large-scale demonstrations of a human hand conducting the same tasks.
We show that the demonstrations can indeed improve robot learning by a large margin and solve the complex tasks which reinforcement learning alone cannot solve.
arXiv Detail & Related papers (2021-08-12T17:51:18Z) - Actionable Models: Unsupervised Offline Reinforcement Learning of
Robotic Skills [93.12417203541948]
We propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset.
We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects.
arXiv Detail & Related papers (2021-04-15T20:10:11Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.