論文の概要: Model Compression
- arxiv url: http://arxiv.org/abs/2105.10059v1
- Date: Thu, 20 May 2021 22:48:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-28 09:39:42.727999
- Title: Model Compression
- Title(参考訳): モデル圧縮
- Authors: Arhum Ishtiaq, Sara Mahmood, Maheen Anees, Neha Mumtaz
- Abstract要約: 時間とともに、機械学習モデルはスコープ、機能、サイズが大きくなる。
本稿では,モデル圧縮の領域内での可能性を探究し,各アプローチの効率性について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With time, machine learning models have increased in their scope,
functionality and size. Consequently, the increased functionality and size of
such models requires high-end hardware to both train and provide inference
after the fact. This paper aims to explore the possibilities within the domain
of model compression and discuss the efficiency of each of the possible
approaches while comparing model size and performance with respect to pre- and
post-compression.
- Abstract(参考訳): 時間とともに、機械学習モデルはスコープ、機能、サイズが大きくなる。
そのため、そのようなモデルの機能性とサイズが大きくなると、トレーニングと推論の両方を行うためのハイエンドハードウェアが必要になる。
本稿では,モデル圧縮の領域内の可能性を検討し,モデルサイズと性能をプリ圧縮とポスト圧縮とで比較しながら,各手法の効率性について考察する。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Comprehensive Study on Performance Evaluation and Optimization of Model Compression: Bridging Traditional Deep Learning and Large Language Models [0.0]
世界中のコネクテッドデバイスの数の増加は、計算能力の低いローカルデバイスに容易に展開できる圧縮モデルを保証する。
画像分類,オブジェクト検出,言語モデル,生成モデルに基づく問題文に使用される一般的なディープラーニングモデルに対して,量子化とプルーニングの両方を実装した。
論文 参考訳(メタデータ) (2024-07-22T14:20:53Z) - Tiny Models are the Computational Saver for Large Models [1.8350044465969415]
本稿では,TinySaverについて紹介する。TinySaverは,大規模モデルを適応的に置き換えるために小さなモデルを用いる,早期に出現する動的モデル圧縮手法である。
この手法をImageNet-1k分類で評価した結果,最大90%の演算数を削減できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-26T14:14:30Z) - Model Compression and Efficient Inference for Large Language Models: A
Survey [20.199282252344396]
大きな言語モデルは、より小さなモデルに比べて2つの顕著な特徴を持つ。
大きなモデルの最も顕著な側面は、モデルの微調整やトレーニングに関連する非常に高いコストである。
大規模モデルは、1つのタスクのパフォーマンスよりも、汎用性と一般化を強調する。
論文 参考訳(メタデータ) (2024-02-15T06:58:30Z) - A Lightweight Feature Fusion Architecture For Resource-Constrained Crowd
Counting [3.5066463427087777]
クラウドカウントモデルの汎用性を高めるために,2つの軽量モデルを導入する。
これらのモデルは、MobileNetとMobileViTという2つの異なるバックボーンを持ちながら、同じダウンストリームアーキテクチャを維持している。
隣接特徴融合を利用して、事前学習モデル(PTM)から多様な特徴を抽出し、その後、シームレスにこれらの特徴を組み合わせる。
論文 参考訳(メタデータ) (2024-01-11T15:13:31Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
トランスフォーマーに関するこれまでの研究は、異なるレイヤでパラメータを共有することに集中しており、モデルの深さを増大させることで、限られたパラメータを持つモデルの性能を向上させることができる。
このアプローチの成功は, モデル複雑性の増加により, ごく一部に過ぎず, 収束性の向上に大きく寄与することを示す。
8つの機械翻訳タスクの実験結果から,パラメータ共有モデルのモデル複雑性を半分に抑えて,我々のモデルが競合性能を達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T10:48:59Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - What do Compressed Large Language Models Forget? Robustness Challenges
in Model Compression [68.82486784654817]
本稿では,知識蒸留とプルーニングを含む2つの一般的なモデル圧縮手法について検討する。
本研究では, 圧縮モデルが, 対向テストセット上のPLMモデルよりもはるかに頑健であることを示す。
サンプル不確実性に基づくモデル圧縮の正規化戦略を開発する。
論文 参考訳(メタデータ) (2021-10-16T00:20:04Z) - Self-Supervised GAN Compression [32.21713098893454]
従来の手法では,標準モデル圧縮手法であるウェイトプルーニングがGANに適用できないことを示す。
次に、訓練された判別器を用いて圧縮発電機の訓練を監督する自己教師圧縮手法を開発する。
我々は,このフレームワークが高い疎度に対して魅力的な性能を示し,新しいタスクやモデルに容易に適用できることを示し,異なるプルーニング粒度間の有意義な比較を可能にする。
論文 参考訳(メタデータ) (2020-07-03T04:18:54Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
アンサンブルは高い精度で単一モデルより優れており、計算に要する総FLOPは少ない。
これは、アンサンブルの出力の多様性がより大きなモデルを訓練するよりも効率的であることを示す興味深い観察結果である。
論文 参考訳(メタデータ) (2020-05-01T18:56:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。