論文の概要: Privacy Amplification Via Bernoulli Sampling
- arxiv url: http://arxiv.org/abs/2105.10594v1
- Date: Fri, 21 May 2021 22:34:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 11:27:26.834481
- Title: Privacy Amplification Via Bernoulli Sampling
- Title(参考訳): bernoulliサンプリングによるプライバシー増幅
- Authors: Jacob Imola, Kamalika Chaudhuri
- Abstract要約: ベイズ推論で用いられる新しい操作, 後部からのサンプリングのプライバシー増幅特性を解析する。
この設定で増幅係数を計算し、この係数の上下境界を確立するアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 24.23990103106668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Balancing privacy and accuracy is a major challenge in designing
differentially private machine learning algorithms. To improve this tradeoff,
prior work has looked at privacy amplification methods which analyze how common
training operations such as iteration and subsampling the data can lead to
higher privacy. In this paper, we analyze privacy amplification properties of a
new operation, sampling from the posterior, that is used in Bayesian inference.
In particular, we look at Bernoulli sampling from a posterior that is described
by a differentially private parameter. We provide an algorithm to compute the
amplification factor in this setting, and establish upper and lower bounds on
this factor. Finally, we look at what happens when we draw k posterior samples
instead of one.
- Abstract(参考訳): プライバシーと正確さのバランスは、異なるプライベートな機械学習アルゴリズムを設計する上で大きな課題である。
このトレードオフを改善するために、前回の作業では、反復やデータのサブサンプリングといった一般的なトレーニング操作が、より高いプライバシにつながる可能性を分析する、プライバシ増幅手法が検討されている。
本稿では,ベイズ推定に使用される新しい操作である後方からサンプリングしたプライバシ増幅特性について解析する。
特に、差動プライベートパラメータによって記述される後方からのベルヌーイサンプリングについて考察する。
この設定で増幅係数を計算し、この係数の上限と下限を設定するアルゴリズムを提供する。
最後に、我々は1つではなくk個の後部サンプルを描くときに何が起こるかを見る。
関連論文リスト
- Shifted Interpolation for Differential Privacy [6.1836947007564085]
雑音勾配降下とその変種は、微分プライベート機械学習の主要なアルゴリズムである。
本稿では、$f$差分プライバシの統一化フレームワークにおいて、"corollary によるプライバシ増幅" 現象を確立する。
これは、強力な凸最適化の基礎的な設定において、最初の正確なプライバシー分析につながる。
論文 参考訳(メタデータ) (2024-03-01T04:50:04Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Why Is Public Pretraining Necessary for Private Model Training? [50.054565310457306]
公開データに対する事前トレーニングは、非プライベートな設定よりも顕著な利益をもたらすことを示す。
トレードオフは、アルゴリズムが2つのフェーズを通過する必要のある、より深い損失モデルかもしれない、と私たちは主張する。
直観によって導かれた理論的な構成は、公的な事前訓練なしでの私的分離を確実に実証するものである。
論文 参考訳(メタデータ) (2023-02-19T05:32:20Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - On the Statistical Complexity of Estimation and Testing under Privacy
Constraints [0.0]
差分プライバシー下での統計的テストのパワーをプラグアンドプレイ方式で特徴付ける方法を示す。
プライバシ保護のレベルが非常に高い場合にのみ、プライバシの維持が顕著なパフォーマンス低下をもたらすことを示す。
最後に,プライベート凸解法であるDP-SGLDアルゴリズムを高信頼度で最大推定できることを示した。
論文 参考訳(メタデータ) (2022-10-05T12:55:53Z) - Stronger Privacy Amplification by Shuffling for R\'enyi and Approximate
Differential Privacy [43.33288245778629]
このモデルにおける重要な結果は、ランダムにランダム化されたデータをランダムにシャッフルすると、差分プライバシー保証が増幅されることである。
このような増幅は、匿名でデータが提供されるシステムにおいて、はるかに強力なプライバシー保証を意味する。
本研究では,理論的にも数値的にも,アートプライバシの増幅状態を改善する。
論文 参考訳(メタデータ) (2022-08-09T08:13:48Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Privacy of Noisy Stochastic Gradient Descent: More Iterations without
More Privacy Loss [34.66940399825547]
業界は単純なアルゴリズムを広く採用している:騒音を伴うグラディエントDescent(グラディエントLangevin Dynamics)
このアルゴリズムのプライバシ損失に関する疑問は、バウンドドメイン上の滑らかな凸損失の一見単純な設定であっても、まだオープンである。
我々は、差分プライバシーを一定の要因まで特徴づけ、小さなバーンイン期間の後、SGDの実行がこれ以上のプライバシーを漏らさないことを示す。
論文 参考訳(メタデータ) (2022-05-27T02:09:55Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
ランダムシャッフルは、局所的ランダム化データの差分プライバシー保証を増幅する。
私たちの結果は、以前の作業よりも単純で、ほぼ同じ保証で差分プライバシーに拡張された新しいアプローチに基づいています。
論文 参考訳(メタデータ) (2020-12-23T17:07:26Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。