論文の概要: Soccer Player Tracking in Low Quality Video
- arxiv url: http://arxiv.org/abs/2105.10700v1
- Date: Sat, 22 May 2021 11:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:16:56.235248
- Title: Soccer Player Tracking in Low Quality Video
- Title(参考訳): 低品質ビデオでのサッカー選手の追跡
- Authors: Eloi Martins, Jos\'e Henrique Brito
- Abstract要約: 異なるタイプのビデオ品質で複数のサッカー選手を追跡できるシステムを提案する。
最先端のサッカー選手追跡システムとは対照的に、ゴールは低品質のビデオで効果的に追跡できることです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we propose a system capable of tracking multiple soccer players
in different types of video quality. The main goal, in contrast to most
state-of-art soccer player tracking systems, is the ability of execute
effectively tracking in videos of low-quality. We adapted a state-of-art
Multiple Object Tracking to the task. In order to do that adaptation, we
created a Detection and a Tracking Dataset for 3 different qualities of video.
The results of our system are conclusive of its high performance.
- Abstract(参考訳): 本稿では,異なるタイプのビデオ品質で複数のサッカー選手を追跡できるシステムを提案する。
ほとんどの最先端のサッカー選手追跡システムとは対照的に、主な目標は、低品質のビデオで効果的にトラッキングする能力である。
我々はそのタスクに最先端のマルチオブジェクト追跡を適用した。
この適応のために,ビデオの3つの異なる品質に対する検出と追跡データセットを作成しました。
本システムの結果は,その高い性能を決定づけるものである。
関連論文リスト
- TrackNetV4: Enhancing Fast Sports Object Tracking with Motion Attention Maps [6.548400020461624]
本研究では,高次視覚特徴と学習可能な運動注意マップを融合させることにより,トラックネットファミリーの強化を実現する。
提案手法は,移動プロンプト層によって変調されたフレーム差分マップを利用して,時間とともに重要な動き領域をハイライトする。
我々は、既存のTrackNet上に構築された軽量のプラグイン・アンド・プレイソリューションをTrackNetV4と呼びます。
論文 参考訳(メタデータ) (2024-09-22T17:58:09Z) - TeamTrack: A Dataset for Multi-Sport Multi-Object Tracking in Full-pitch Videos [11.35998213546475]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要な課題である。
スポーツにおけるMOTに特化したベンチマークデータセットであるTeamTrackを紹介する。
TeamTrackは、サッカー、バスケットボール、ハンドボールなど、さまざまなスポーツのフルピッチビデオデータを集めたコレクションだ。
論文 参考訳(メタデータ) (2024-04-22T04:33:40Z) - Tracking Anything in High Quality [63.63653185865726]
HQTrackは高品質なビデオ追跡のためのフレームワークだ。
ビデオマルチオブジェクトセグメンタ(VMOS)とマスクリファインダ(MR)で構成されている。
論文 参考訳(メタデータ) (2023-07-26T06:19:46Z) - ChatVideo: A Tracklet-centric Multimodal and Versatile Video
Understanding System [119.51012668709502]
マルチモーダル・多目的ビデオ理解のためのビジョンを提示し,プロトタイプシステム,システムを提案する。
本システムは,トラックレットを基本映像単位として扱う,トラックレット中心のパラダイムに基づいて構築されている。
検出されたすべてのトラックレットはデータベースに格納され、データベースマネージャを介してユーザと対話する。
論文 参考訳(メタデータ) (2023-04-27T17:59:58Z) - Graph-Based Multi-Camera Soccer Player Tracker [1.6244541005112743]
本稿では,サッカー場周辺に設置した複数のキャリブレーションカメラから,長撮影映像記録におけるサッカー選手の追跡を目的としたマルチカメラ追跡手法を提案する。
カメラとの距離が大きいため、個々のプレイヤーを視覚的に区別することは困難であり、従来のソリューションの性能に悪影響を及ぼす。
本手法は,各プレイヤーのダイナミクスと周辺プレイヤー間の相互作用に着目し,トラッキング性能の向上を図る。
論文 参考訳(メタデータ) (2022-11-03T20:01:48Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
本稿では,各30の200列からなる複数物体追跡のための新しいデータセットを提案する。
データセットは、バウンディングボックスとトラックレットIDで完全に注釈付けされている。
分析の結果,サッカービデオにおける複数の選手,審判,ボール追跡が解決されるには程遠いことがわかった。
論文 参考訳(メタデータ) (2022-04-14T12:22:12Z) - A New Action Recognition Framework for Video Highlights Summarization in
Sporting Events [9.870478438166288]
YOLO-v3とOpenPoseという2つの古典的オープンソース構造に基づく3レベル予測アルゴリズムを用いて,スポーツビデオストリームを自動的にクリップするフレームワークを提案する。
その結果,スポーツ映像のトレーニングデータを用いて,スポーツ活動のハイライトを正確に行うことができることがわかった。
論文 参考訳(メタデータ) (2020-12-01T04:14:40Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 は SoccerNet ビデオデータセット用の手動アノテーションの大規模なコーパスである。
SoccerNetの500の未トリミングサッカービデオの中で、約300万のアノテーションをリリースしています。
サッカーの領域における現在のタスクを拡張し、アクションスポッティング、カメラショットセグメンテーション、境界検出を含む。
論文 参考訳(メタデータ) (2020-11-26T16:10:16Z) - NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results [131.05847851975236]
ビデオ品質マッピング(VQM)におけるNTIRE 2020の課題を概観する。
この課題には、2つのベンチマークデータセットに対して、教師付きトラック(トラック1)と弱い教師付きトラック(トラック2)の両方が含まれる。
トラック1では、合計7チームが最終テストフェーズに出場し、問題に対する新しい効果的な解決策を実証した。
トラック2では、いくつかの既存手法が評価され、弱教師付きビデオ品質マッピング問題に対する有望な解決策が示されている。
論文 参考訳(メタデータ) (2020-05-05T15:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。