論文の概要: Machine Learning Regression based Single Event Transient Modeling Method
for Circuit-Level Simulation
- arxiv url: http://arxiv.org/abs/2105.10723v1
- Date: Sat, 22 May 2021 13:24:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-27 08:42:27.903890
- Title: Machine Learning Regression based Single Event Transient Modeling Method
for Circuit-Level Simulation
- Title(参考訳): 機械学習回帰に基づく回路レベルシミュレーションのための単一イベント過渡モデリング手法
- Authors: ChangQing Xu, Yi Liu, XinFang Liao, JiaLiang Cheng and YinTang Yang
- Abstract要約: 機械学習レグレッションに基づくSETモデリング手法を提案する。
提案手法は, 複雑な物理機構を考慮せずに, 合理的かつ正確なモデルを得ることができる。
- 参考スコア(独自算出の注目度): 3.0084500900270004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a novel machine learning regression based single event
transient (SET) modeling method is proposed. The proposed method can obtain a
reasonable and accurate model without considering the complex physical
mechanism. We got plenty of SET current data of SMIC 130nm bulk CMOS by TCAD
simulation under different conditions (e.g. different LET and different drain
bias voltage). A multilayer feedfordward neural network is used to build the
SET pulse current model by learning the data from TCAD simulation. The proposed
model is validated with the simulation results from TCAD simulation. The
trained SET pulse current model is implemented as a Verilog-A current source in
the Cadence Spectre circuit simulator and an inverter with five fan-outs is
used to show the practicability and reasonableness of the proposed SET pulse
current model for circuit-level single-event effect (SEE) simulation.
- Abstract(参考訳): 本稿では,新しい機械学習回帰ベース単一イベントトランジェント(set)モデリング手法を提案する。
提案手法は複雑な物理機構を考慮せずに合理的かつ正確なモデルを得ることができる。
SMIC 130nmバルクCMOSのSET電流データは、異なる条件(例えば、TCADシミュレーション)で得られる。
異なるletと異なるドレインバイアス電圧)。
TCADシミュレーションからデータを学習することにより、SETパルス電流モデルを構築するために、多層フィードフォードワードニューラルネットワークを用いる。
提案モデルは,tcaシミュレーションによるシミュレーション結果によって検証される。
訓練されたセットパルス電流モデルは、ケイデンス・スペクタ回路シミュレータのverilog-a電流源として実装され、5つのファンアウトを持つインバータを用いて、回路レベルの単一事象効果(see)シミュレーションのためのセットパルス電流モデルの実用性と妥当性を示す。
関連論文リスト
- Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - FuNToM: Functional Modeling of RF Circuits Using a Neural Network
Assisted Two-Port Analysis Method [0.40598496563941905]
本稿では,RF回路の機能モデリング手法であるFuNToMを提案する。
FuNToMは、単一のメインデータセットと複数の小さなデータセットを使用して、複数のトポロジをモデル化するための2ポート解析手法を利用している。
その結果、複数のRF回路において、最先端技術と比較すると、必要なトレーニングデータを2.8倍から10.9倍削減できることがわかった。
論文 参考訳(メタデータ) (2023-08-03T21:08:16Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Input-to-State Stable Neural Ordinary Differential Equations with
Applications to Transient Modeling of Circuits [11.636872461683742]
本稿では,入力から状態への安定な連続時間リカレントニューラルネットワークによってパラメータ化されたニューラル常微分方程式のクラスを提案する。
提案手法を用いて電子回路の動作モデルを安価にシミュレーションする。
論文 参考訳(メタデータ) (2022-02-14T01:51:05Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - Data-driven Small-signal Modeling for Converter-based Power Systems [7.501426386641255]
本稿では,コンバータを用いた電力系統の研究に有用な,データ駆動型小型信号ベースモデルを導出するための完全な手順を詳述する。
モデルを計算するために、単一DTとアンサンブルDTとスプライン回帰の両方を用いて決定木回帰(DT)を用いた。
モデルの適用可能性について論じ、さらなる電力系統小信号関連研究において、開発モデルの可能性を強調した。
論文 参考訳(メタデータ) (2021-08-30T08:10:45Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Recurrent convolutional neural network for the surrogate modeling of
subsurface flow simulation [0.0]
本稿では,数値フローシミュレーションの代理モデルとして,SegNetとConvLSTM層を組み合わせることを提案する。
その結果,シミュレーションの出力が時系列データである場合,SegNetに基づくサロゲートモデルの性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2020-10-08T09:34:48Z) - Learning Compact Physics-Aware Delayed Photocurrent Models Using Dynamic
Mode Decomposition [1.933681537640272]
半導体デバイスにおける放射誘起光電流は、複雑な物理モデルを用いてシミュレートすることができる。
複数の個別回路要素の詳細なモデルを評価することは、計算上不可能である。
本稿では,大規模回路シミュレーションで実装可能な小型遅延光電流モデルの学習手順を示す。
論文 参考訳(メタデータ) (2020-08-27T18:21:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。