論文の概要: Sockpuppet Detection: a Telegram case study
- arxiv url: http://arxiv.org/abs/2105.10799v1
- Date: Sat, 22 May 2021 19:28:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-26 12:15:39.697254
- Title: Sockpuppet Detection: a Telegram case study
- Title(参考訳): Sockpuppet の検出:Telegram のケーススタディ
- Authors: Gabriele Pisciotta, Miriana Somenzi, Elisa Barisani, Giulio Rossetti
- Abstract要約: Online Social Networks (OSN) では、ユーザーが複数のアカウントを作成できるケースが多数ある。
これらの架空のキャラクターは、意見の操作、偽ニュースの拡散、他のユーザーを乱すといった虐待的な行動を実行するために利用することができる。
我々の研究は、広範囲にわたるインスタントメッセージングアプリケーションであるTelegramに焦点を当てており、組織犯罪やテロリズムのメンバーによる搾取でよく知られており、一般的には攻撃的な行動を持つ人々の存在感が高いことで知られている。
- 参考スコア(独自算出の注目度): 0.5620334754517148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Online Social Networks (OSN) numerous are the cases in which users create
multiple accounts that publicly seem to belong to different people but are
actually fake identities of the same person. These fictitious characters can be
exploited to carry out abusive behaviors such as manipulating opinions,
spreading fake news and disturbing other users. In literature this problem is
known as the Sockpuppet problem. In our work we focus on Telegram, a
wide-spread instant messaging application, often known for its exploitation by
members of organized crime and terrorism, and more in general for its high
presence of people who have offensive behaviors.
- Abstract(参考訳): オンライン・ソーシャル・ネットワーク(osn)では、ユーザーが複数のアカウントを作成できるケースが多数ある。
これらの架空のキャラクターは、意見の操作、偽ニュースの拡散、他のユーザーを乱すといった虐待的な行動を実行するために利用することができる。
文献では、この問題はソックパペット問題として知られている。
我々の研究は、広範囲にわたるインスタントメッセージングアプリケーションであるTelegramに焦点を当てており、組織犯罪やテロリズムのメンバーによる搾取でよく知られており、一般的には攻撃的な行動を持つ人々の存在で知られている。
関連論文リスト
- Unsupervised detection of coordinated fake-follower campaigns on social
media [1.3035246321276739]
本稿では,悪意のあるアカウントの特定のカテゴリを対象とする教師なし検出手法を提案する。
当社のフレームワークは,ソーシャルメディアアカウントの全フォロワーのうち,異常なパターンを識別する。
検出された異常なフォロワー群は複数のアカウントで一貫した行動を示す。
論文 参考訳(メタデータ) (2023-10-31T12:30:29Z) - User Identity Linkage in Social Media Using Linguistic and Social
Interaction Features [11.781485566149994]
ユーザーIDのリンクは、ソーシャルメディアアカウントが同一の自然人に属する可能性があることを明らかにすることを目的としている。
本研究は,ユーザのオンライン活動の複数の属性を利用する機械学習に基づく検出モデルを提案する。
モデルの有効性は、乱用とテロ関連のTwitterコンテンツに関する2つのケースで実証されている。
論文 参考訳(メタデータ) (2023-08-22T15:10:38Z) - Trust and Believe -- Should We? Evaluating the Trustworthiness of
Twitter Users [5.695742189917657]
ソーシャルメディア上のフェイクニュースは、個人と社会の両方に悪影響を及ぼす大きな問題である。
この作業において、私たちは、ソーシャルネットワークコミュニティに信頼を喚起するソリューションを提供したいと考えている。
本モデルでは,Twitter上で5万人の政治家の行動を分析し,評価されたユーザ毎に影響スコアを割り当てる。
論文 参考訳(メタデータ) (2022-10-27T06:57:19Z) - Detecting fake accounts through Generative Adversarial Network in online
social media [0.0]
本稿では,ユーザ類似度尺度とGANアルゴリズムを用いて,Twitterデータセット内の偽ユーザアカウントを識別する手法を提案する。
問題の複雑さにもかかわらず、この方法は偽アカウントの分類と検出において80%のAUCレートを達成する。
論文 参考訳(メタデータ) (2022-10-25T10:20:27Z) - Uncovering the Dark Side of Telegram: Fakes, Clones, Scams, and
Conspiracy Movements [67.39353554498636]
我々は35,382の異なるチャンネルと130,000,000以上のメッセージを収集して,Telegramの大規模解析を行う。
カードなどのダークウェブのプライバシー保護サービスにも、悪名高い活動がいくつかある。
疑似チャネルを86%の精度で識別できる機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-26T14:53:31Z) - Identity Signals in Emoji Do not Influence Perception of Factual Truth
on Twitter [90.14874935843544]
以前の研究によると、Twitterユーザーは人種的・民族的アイデンティティを表現するために、自己表現の行為としてスキントーン絵文字を使っている。
この信号が、その信号を含む投稿の内容に対する読者の認識に影響を及ぼすかどうかを検証する。
絵文字もプロフィール写真も、読者がこれらの事実をどう評価するかに影響を与えていない。
論文 参考訳(メタデータ) (2021-05-07T10:56:19Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z) - Quantifying the Vulnerabilities of the Online Public Square to Adversarial Manipulation Tactics [43.98568073610101]
ソーシャルメディアモデルを用いて、コンテンツの品質に対するいくつかの敵の操作戦術の影響を定量化する。
ソーシャルメディアの目印である影響力のあるアカウントの存在は、操作するオンラインコミュニティの脆弱性を悪化させる。
これらの知見は、プラットフォームがソーシャルメディアユーザーによる操作のレジリエンスを高めるために使われる可能性があることを示唆している。
論文 参考訳(メタデータ) (2019-07-13T21:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。