論文の概要: User Identity Linkage in Social Media Using Linguistic and Social
Interaction Features
- arxiv url: http://arxiv.org/abs/2308.11684v1
- Date: Tue, 22 Aug 2023 15:10:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 17:20:14.210544
- Title: User Identity Linkage in Social Media Using Linguistic and Social
Interaction Features
- Title(参考訳): 言語的・社会的相互作用を利用したソーシャルメディアにおけるユーザアイデンティティリンク
- Authors: Despoina Chatzakou, Juan Soler-Company, Theodora Tsikrika, Leo Wanner,
Stefanos Vrochidis, Ioannis Kompatsiaris
- Abstract要約: ユーザーIDのリンクは、ソーシャルメディアアカウントが同一の自然人に属する可能性があることを明らかにすることを目的としている。
本研究は,ユーザのオンライン活動の複数の属性を利用する機械学習に基づく検出モデルを提案する。
モデルの有効性は、乱用とテロ関連のTwitterコンテンツに関する2つのケースで実証されている。
- 参考スコア(独自算出の注目度): 11.781485566149994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media users often hold several accounts in their effort to multiply
the spread of their thoughts, ideas, and viewpoints. In the particular case of
objectionable content, users tend to create multiple accounts to bypass the
combating measures enforced by social media platforms and thus retain their
online identity even if some of their accounts are suspended. User identity
linkage aims to reveal social media accounts likely to belong to the same
natural person so as to prevent the spread of abusive/illegal activities. To
this end, this work proposes a machine learning-based detection model, which
uses multiple attributes of users' online activity in order to identify whether
two or more virtual identities belong to the same real natural person. The
models efficacy is demonstrated on two cases on abusive and terrorism-related
Twitter content.
- Abstract(参考訳): ソーシャルメディアのユーザーは、自分の考え、考え、視点の広がりを増やそうと、複数のアカウントを持っていることが多い。
好ましくないコンテンツの場合、ユーザーはソーシャルメディアプラットフォームが実施する対策を回避し、一部のアカウントを停止してもオンラインアイデンティティを維持するために複数のアカウントを作成する傾向がある。
user identity linkageは、同じ自然人に属する可能性が高いソーシャルメディアアカウントを明らかにし、虐待/違法行為の拡散を防止することを目的としている。
そこで本研究では,2つ以上の仮想的アイデンティティが同一の自然人かどうかを識別するために,ユーザのオンライン活動の複数の属性を利用する機械学習に基づく検出モデルを提案する。
モデルの有効性は、虐待とテロ関連のTwitterコンテンツで実証されている。
関連論文リスト
- Unsupervised detection of coordinated fake-follower campaigns on social
media [1.3035246321276739]
本稿では,悪意のあるアカウントの特定のカテゴリを対象とする教師なし検出手法を提案する。
当社のフレームワークは,ソーシャルメディアアカウントの全フォロワーのうち,異常なパターンを識別する。
検出された異常なフォロワー群は複数のアカウントで一貫した行動を示す。
論文 参考訳(メタデータ) (2023-10-31T12:30:29Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Trust and Believe -- Should We? Evaluating the Trustworthiness of
Twitter Users [5.695742189917657]
ソーシャルメディア上のフェイクニュースは、個人と社会の両方に悪影響を及ぼす大きな問題である。
この作業において、私たちは、ソーシャルネットワークコミュニティに信頼を喚起するソリューションを提供したいと考えている。
本モデルでは,Twitter上で5万人の政治家の行動を分析し,評価されたユーザ毎に影響スコアを割り当てる。
論文 参考訳(メタデータ) (2022-10-27T06:57:19Z) - Detecting fake accounts through Generative Adversarial Network in online
social media [0.0]
本稿では,ユーザ類似度尺度とGANアルゴリズムを用いて,Twitterデータセット内の偽ユーザアカウントを識別する手法を提案する。
問題の複雑さにもかかわらず、この方法は偽アカウントの分類と検出において80%のAUCレートを達成する。
論文 参考訳(メタデータ) (2022-10-25T10:20:27Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
プライバシー保護方式でユーザを包括的に表現するために,ネットワーク横断型ソーシャルユーザ埋め込みフレームワークDP-CroSUEを提案する。
特に、各異種ソーシャルネットワークに対して、異種データ型に対するプライバシー期待の変化を捉えるために、まずハイブリッドな差分プライバシーの概念を導入する。
ユーザ埋め込みをさらに強化するため、新しいネットワーク間GCN埋め込みモデルは、それらの整列したユーザを介して、ネットワーク間で知識を伝達するように設計されている。
論文 参考訳(メタデータ) (2022-09-04T06:22:37Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Sockpuppet Detection: a Telegram case study [0.5620334754517148]
Online Social Networks (OSN) では、ユーザーが複数のアカウントを作成できるケースが多数ある。
これらの架空のキャラクターは、意見の操作、偽ニュースの拡散、他のユーザーを乱すといった虐待的な行動を実行するために利用することができる。
我々の研究は、広範囲にわたるインスタントメッセージングアプリケーションであるTelegramに焦点を当てており、組織犯罪やテロリズムのメンバーによる搾取でよく知られており、一般的には攻撃的な行動を持つ人々の存在感が高いことで知られている。
論文 参考訳(メタデータ) (2021-05-22T19:28:10Z) - Misleading Repurposing on Twitter [3.0254442724635173]
本研究は, ミスリーディング再資源化に関する最初の, 大規模研究である。
悪意のあるユーザーは、フォロワーを維持しながらアカウントを新しい目的に利用するために、プロフィール属性の変更などを通じて、ソーシャルメディアアカウントのアイデンティティを変更する。
本稿では,インターネットアーカイブのTwitter Stream Grabから収集したデータに対する教師あり学習を用いて,再利用されたアカウントにフラグを付ける手法と行動の定義を提案する。
論文 参考訳(メタデータ) (2020-10-20T20:19:01Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。