Quantum references
- URL: http://arxiv.org/abs/2105.10914v3
- Date: Thu, 4 Jul 2024 15:59:55 GMT
- Title: Quantum references
- Authors: Dominique Unruh,
- Abstract summary: We present a theory of "quantum references", that allow to point to a subsystem of a larger quantum system, and to mutate/measure that part.
Our modeling is intended to be well suited for formalization in theorem provers and as a foundation for modeling variables in quantum programs.
- Score: 0.29008108937701327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a theory of "quantum references", similar to lenses in classical functional programming, that allow to point to a subsystem of a larger quantum system, and to mutate/measure that part. Mutable classical variables, quantum registers, and wires in quantum circuits are examples of this, but also references to parts of larger quantum datastructures. Quantum references in our setting can also refer to subparts of other references, or combinations of parts from different references, or quantum references seen in a different basis, etc. Our modeling is intended to be well suited for formalization in theorem provers and as a foundation for modeling variables in quantum programs. We study quantum references in greater detail and cover the infinite-dimensional case as well, but also provide a more general treatment not specific to the quantum case. We implemented a large part of our results (including a small quantum Hoare logic and an analysis of quantum teleportation) in the Isabelle/HOL theorem prover.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A prototype of quantum von Neumann architecture [0.0]
We propose a model of universal quantum computer system, the quantum version of the von Neumann architecture.
It uses ebits as elements of the quantum memory unit, and qubits as elements of the quantum control unit and processing unit.
Our primary study demonstrates the manifold power of quantum information and paves the way for the creation of quantum computer systems.
arXiv Detail & Related papers (2021-12-17T06:33:31Z) - LQP: The Dynamic Logic of Quantum Information [77.34726150561087]
This paper introduces a dynamic logic formalism for reasoning about information flow in composite quantum systems.
We present a finitary syntax, a relational semantics and a sound proof system for this logic.
As applications, we use our system to give formal correctness for the Teleportation protocol and for a standard Quantum Secret Sharing protocol.
arXiv Detail & Related papers (2021-10-04T12:20:23Z) - Quantum information and beyond -- with quantum candies [0.0]
We investigate, extend, and greatly expand here "quantum candies" (invented by Jacobs)
"quantum" candies describe some basic concepts in quantum information, including quantum bits, complementarity, the no-cloning principle, and entanglement.
These demonstrations are done in an approachable manner, that can be explained to high-school students, without using the hard-to-grasp concept of superpositions and its mathematics.
arXiv Detail & Related papers (2021-09-30T16:05:33Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Tossing Quantum Coins and Dice [0.0]
This case is an important example of a quantum procedure because it presents a typical framework employed in quantum information processing and quantum computing.
The emphasis is on the clarification of the difference between quantum and classical conditional probabilities.
arXiv Detail & Related papers (2021-03-31T11:39:56Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.