論文の概要: Face Anonymization by Manipulating Decoupled Identity Representation
- arxiv url: http://arxiv.org/abs/2105.11137v1
- Date: Mon, 24 May 2021 07:39:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:11:14.065748
- Title: Face Anonymization by Manipulating Decoupled Identity Representation
- Title(参考訳): 分離id表現の操作による顔匿名化
- Authors: Tianxiang Ma, Dongze Li, Wei Wang, Jing Dong
- Abstract要約: 本稿では,顔画像の識別情報をわずかな修正で漏洩から保護する手法を提案する。
具体的には、生成的敵ネットワークの力を利用する他の顔属性と同一性表現を分離する。
モデルの不整合性を回避し、匿名性生成(AIG)を効果的に行う手法を提案する。
- 参考スコア(独自算出の注目度): 5.26916168336451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy protection on human biological information has drawn increasing
attention in recent years, among which face anonymization plays an importance
role. We propose a novel approach which protects identity information of facial
images from leakage with slightest modification. Specifically, we disentangle
identity representation from other facial attributes leveraging the power of
generative adversarial networks trained on a conditional multi-scale
reconstruction (CMR) loss and an identity loss. We evaulate the disentangle
ability of our model, and propose an effective method for identity
anonymization, namely Anonymous Identity Generation (AIG), to reach the goal of
face anonymization meanwhile maintaining similarity to the original image as
much as possible. Quantitative and qualitative results demonstrate our method's
superiority compared with the SOTAs on both visual quality and anonymization
success rate.
- Abstract(参考訳): 近年、人間の生体情報に対するプライバシー保護が注目され、顔の匿名化が重要な役割を担っている。
本稿では,顔画像の識別情報をわずかな修正で漏洩から保護する手法を提案する。
具体的には,条件付きマルチスケール・リコンストラクション(cmr)の損失とアイデンティティ損失を訓練した生成的敵ネットワークのパワーを利用して,他の顔属性からアイデンティティ表現を分離する。
本研究は,本モデルの不連続性を回避し,元の画像との類似性を可能な限り維持しつつ,対面匿名化の目標を達成するための効果的な匿名化手法,すなわち匿名識別生成(aig)を提案する。
定量的および定性的な結果は,視覚的品質と匿名化の成功率の両方において,SOTAよりも優れていることを示す。
関連論文リスト
- ID-Guard: A Universal Framework for Combating Facial Manipulation via Breaking Identification [60.73617868629575]
深層学習に基づく顔操作の誤用は、公民権に対する潜在的な脅威となる。
この不正行為を防ぐため、プロアクティブな防御技術が提案され、操作プロセスを妨害した。
我々は,ID-Guardと呼ばれる,顔操作と戦うための新しい普遍的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-20T09:30:08Z) - Facial Identity Anonymization via Intrinsic and Extrinsic Attention Distraction [12.12653214552672]
本研究は,本質的および外生的アイデンティティの注意をそらすことによって,新たな顔の匿名化手法を提案する。
当社のアプローチでは,顔の外観や形状を柔軟かつ直感的に操作することで,多様な結果が得られる。
ユーザに対して、パーソナライズされた匿名化の実行を指示するためにも使用できる。
論文 参考訳(メタデータ) (2024-06-25T02:07:55Z) - Anonymization Prompt Learning for Facial Privacy-Preserving Text-to-Image Generation [56.46932751058042]
我々は、テキストから画像への拡散モデルのための学習可能なプロンプトプレフィックスをトレーニングし、匿名化された顔のアイデンティティを生成するよう強制する。
実験では,非同一性固有の画像生成の品質を損なうことなく,特定の個人を匿名化するAPLの匿名化性能を実証した。
論文 参考訳(メタデータ) (2024-05-27T07:38:26Z) - HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection [60.63915939982923]
顔の身元特定は、身元保護問題を解決するための実践的な方法である。
既存の顔の特定方法にはいくつかの問題がある。
これらの問題に対処するために,HFORD(High-Fidelity and Occlusion-Robust De-identification)法を提案する。
論文 参考訳(メタデータ) (2023-11-15T08:59:02Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - GANonymization: A GAN-based Face Anonymization Framework for Preserving
Emotional Expressions [43.017036538109274]
GANonymizationは、表情保存能力を持つ新しい顔匿名化フレームワークである。
提案手法は, 顔の高レベル表現をベースとして, GAN(Generative Adversarial Network)に基づく匿名化バージョンに合成する。
論文 参考訳(メタデータ) (2023-05-03T14:22:48Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - Learnable Privacy-Preserving Anonymization for Pedestrian Images [27.178354411900127]
本稿では,歩行者画像における新たなプライバシー保護匿名化問題について検討する。
認証されたモデルに対する個人識別情報(PII)を保存し、PIIが第三者によって認識されないようにする。
本稿では,全体匿名画像の可逆的生成が可能な共同学習可逆匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-24T07:04:16Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
顔の非識別、別名顔の匿名化は、実際のアイデンティティが隠されている間、同様の外観と同じ背景を持つ別の画像を生成することを指します。
我々は,データ駆動型ディープニューラルネットワークと差分プライバシー機構を組み合わせた顔匿名化フレームワークであるIdentityDPを提案する。
我々のモデルは、顔の識別関連情報を効果的に難読化し、視覚的類似性を保ち、高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2021-03-02T14:26:00Z) - CIAGAN: Conditional Identity Anonymization Generative Adversarial
Networks [12.20367903755194]
CIAGANは条件付き生成対向ネットワークに基づく画像およびビデオの匿名化モデルである。
このモデルでは,高品質な画像や映像を制作しながら,顔や身体の特徴を識別できる。
論文 参考訳(メタデータ) (2020-05-19T15:56:08Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。