論文の概要: HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection
- arxiv url: http://arxiv.org/abs/2311.08786v1
- Date: Wed, 15 Nov 2023 08:59:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 16:49:07.154357
- Title: HFORD: High-Fidelity and Occlusion-Robust De-identification for Face
Privacy Protection
- Title(参考訳): HFORD: 顔のプライバシー保護のための高忠実性と排他的不正識別
- Authors: Dongxin Chen, Mingrui Zhu, Nannan Wang, Xinbo Gao
- Abstract要約: 顔の身元特定は、身元保護問題を解決するための実践的な方法である。
既存の顔の特定方法にはいくつかの問題がある。
これらの問題に対処するために,HFORD(High-Fidelity and Occlusion-Robust De-identification)法を提案する。
- 参考スコア(独自算出の注目度): 60.63915939982923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the popularity of smart devices and the development of computer vision
technology, concerns about face privacy protection are growing. The face
de-identification technique is a practical way to solve the identity protection
problem. The existing facial de-identification methods have revealed several
problems, including the impact on the realism of anonymized results when faced
with occlusions and the inability to maintain identity-irrelevant details in
anonymized results. We present a High-Fidelity and Occlusion-Robust
De-identification (HFORD) method to deal with these issues. This approach can
disentangle identities and attributes while preserving image-specific details
such as background, facial features (e.g., wrinkles), and lighting, even in
occluded scenes. To disentangle the latent codes in the GAN inversion space, we
introduce an Identity Disentanglement Module (IDM). This module selects the
latent codes that are closely related to the identity. It further separates the
latent codes into identity-related codes and attribute-related codes, enabling
the network to preserve attributes while only modifying the identity. To ensure
the preservation of image details and enhance the network's robustness to
occlusions, we propose an Attribute Retention Module (ARM). This module
adaptively preserves identity-irrelevant details and facial occlusions and
blends them into the generated results in a modulated manner. Extensive
experiments show that our method has higher quality, better detail fidelity,
and stronger occlusion robustness than other face de-identification methods.
- Abstract(参考訳): スマートデバイスの人気とコンピュータビジョン技術の発展により、顔のプライバシー保護に対する懸念が高まっている。
顔識別技術は、識別保護問題を解決するための実用的な方法である。
既存の顔不特定化手法では, 咬合を受けた場合の匿名化結果のリアリズムへの影響や, 匿名化結果における身元不明な詳細保持能力の欠如など, 様々な問題点が指摘されている。
これらの問題に対処するために,HFORD(High-Fidelity and Occlusion-Robust De-identification)法を提案する。
このアプローチは、背景、顔の特徴(例えば、しわ)、照明などの画像固有の詳細を保持しながら、身元や属性を分離することができる。
GAN逆転空間の潜伏符号をアンタングル化するため、IDM(ID Disentanglement Module)を導入する。
このモジュールは、アイデンティティに密接に関連する潜在コードを選択する。
さらに、潜伏したコードはアイデンティティ関連コードと属性関連コードに分離し、ネットワークが属性を保存でき、IDを変更するだけでよい。
画像の保存を確実にし,ネットワークの閉塞に対する堅牢性を高めるために,属性保持モジュール(ARM)を提案する。
このモジュールは、アイデンティティ非関連の詳細と顔の閉塞を適応的に保存し、それらが生成された結果に変調された方法でブレンドする。
広範な実験により,本手法は他の顔識別法よりも高い品質,精細度,強い咬合頑健性を示した。
関連論文リスト
- ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning [57.91881829308395]
AIポートレートや広告といった幅広いアプリケーションシナリオのために、ID-T2I(ID-preserving text-to-image generation)が注目されている。
我々は,ID-T2I性能を向上させるための一般的なフィードバック学習フレームワークである textbfID-Aligner を提案する。
論文 参考訳(メタデータ) (2024-04-23T18:41:56Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - StyleID: Identity Disentanglement for Anonymizing Faces [4.048444203617942]
この論文の主な貢献は、フィーチャ保存の匿名化フレームワークであるStyleIDの設計である。
コントリビューションの一環として,新しいアンタングル化指標,補足的アンタングル化法,およびアイデンティティ・アンタングル化に関する新たな知見を提示する。
StyleIDはチューナブルなプライバシを提供し、計算の複雑さが低く、現在の最先端ソリューションを上回っている。
論文 参考訳(メタデータ) (2022-12-28T12:04:24Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
そこで我々は,FaceDancerという顔のスワップとID転送のための新しい単一ステージ手法を提案する。
アダプティブ・フィーチャー・フュージョン・アテンション(AFFA)と解釈的特徴類似性規則化(IFSR)の2つの主要なコントリビューションがある。
論文 参考訳(メタデータ) (2022-10-19T11:31:38Z) - FICGAN: Facial Identity Controllable GAN for De-identification [34.38379234653657]
本稿では,プライバシー保護を確実にした高品質な顔画像を生成するための顔識別制御可能GAN(FICGAN)を提案する。
この分析に基づいて,顔画像上の非同一性属性から同一性属性をアンタングル化することを学ぶ,自己エンコーダに基づく条件生成モデルであるFICGANを開発した。
論文 参考訳(メタデータ) (2021-10-02T07:09:27Z) - A Systematical Solution for Face De-identification [6.244117712209321]
異なるタスクにおいて、人々は顔の特定(De-ID)に様々な要件を持つ
本稿では,これらのDe-ID操作に適合する系統的解を提案する。
本手法は,様々な方法で顔データを柔軟に識別し,画像の画質が向上する。
論文 参考訳(メタデータ) (2021-07-19T02:02:51Z) - IdentityDP: Differential Private Identification Protection for Face
Images [17.33916392050051]
顔の非識別、別名顔の匿名化は、実際のアイデンティティが隠されている間、同様の外観と同じ背景を持つ別の画像を生成することを指します。
我々は,データ駆動型ディープニューラルネットワークと差分プライバシー機構を組み合わせた顔匿名化フレームワークであるIdentityDPを提案する。
我々のモデルは、顔の識別関連情報を効果的に難読化し、視覚的類似性を保ち、高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2021-03-02T14:26:00Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。