論文の概要: AirNet: Neural Network Transmission over the Air
- arxiv url: http://arxiv.org/abs/2105.11166v1
- Date: Mon, 24 May 2021 09:16:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 15:22:37.645489
- Title: AirNet: Neural Network Transmission over the Air
- Title(参考訳): airnet: 空気上でのニューラルネットワークの伝送
- Authors: Mikolaj Jankowski, Deniz Gunduz, Krystian Mikolajczyk
- Abstract要約: 深層ニューラルネットワーク(DNN)の効率的なワイヤレス配信を可能にする新しいトレーニングおよびアナログ伝送方式であるAirNetを導入する。
本研究では,同じ帯域幅と電力制約下でのディジタル代替品と比較して,AirNetはテスト精度が有意に高いことを示す。
- 参考スコア(独自算出の注目度): 19.813809179793946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art performance for many emerging edge applications is achieved
by deep neural networks (DNNs). Often, these DNNs are location and time
sensitive, and the parameters of a specific DNN must be delivered from an edge
server to the edge device rapidly and efficiently to carry out time-sensitive
inference tasks. We introduce AirNet, a novel training and analog transmission
method that allows efficient wireless delivery of DNNs. We first train the DNN
with noise injection to counter the wireless channel noise. We also employ
pruning to reduce the channel bandwidth necessary for transmission, and perform
knowledge distillation from a larger model to achieve satisfactory performance,
despite the channel perturbations. We show that AirNet achieves significantly
higher test accuracy compared to digital alternatives under the same bandwidth
and power constraints. It also exhibits graceful degradation with channel
quality, which reduces the requirement for accurate channel estimation.
- Abstract(参考訳): 多くの新興エッジアプリケーションの最先端性能はディープニューラルネットワーク(DNN)によって達成されている。
多くの場合、これらのDNNは位置と時間に敏感であり、特定のDNNのパラメータは、時間に敏感な推論タスクを実行するために、エッジサーバからエッジデバイスに迅速かつ効率的に配信されなければならない。
本稿では,DNNの効率的な無線配信を可能にする新しいトレーニングおよびアナログ伝送手法であるAirNetを紹介する。
まず,dnnをノイズインジェクションで訓練し,無線チャネルノイズに対応する。
また,伝送に必要なチャネル帯域幅を削減し,さらに大きなモデルから知識蒸留を行い,チャネルの摂動にも拘わらず良好な性能を実現するため,プルーニングを用いる。
本研究では,同じ帯域幅と電力制約下でのディジタル代替品と比較して,AirNetはテスト精度が有意に高いことを示す。
また、チャネル品質による優雅な劣化を示し、正確なチャネル推定の要求を低減させる。
関連論文リスト
- The Robustness of Spiking Neural Networks in Communication and its Application towards Network Efficiency in Federated Learning [6.9569682335746235]
スパイキングニューラルネットワーク(SNN)は最近、組み込みデバイスでのオンチップ学習に多大な関心を集めている。
本稿では,フェデレートラーニングにおける雑音の多いコミュニケーション下でのSNNの本質的ロバスト性について検討する。
FLトレーニングにおける帯域幅の削減を目的とした,TopKスパシフィケーションを用いた新しいフェデレートラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-19T13:37:18Z) - TBSN: Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising [94.09442506816724]
BSN(Blind-spot Network)は、自己教師型イメージデノベーション(SSID)において一般的なネットワークアーキテクチャである。
本稿では, ブラインドスポット要求を満たす変圧器演算子の解析と再設計により, 変圧器ベースブラインドスポットネットワーク(TBSN)を提案する。
空間的自己注意のために、注意行列に精巧なマスクを適用して受容場を制限し、拡張された畳み込みを模倣する。
チャネル自己アテンションについては,マルチスケールアーキテクチャの深層部において,チャネル数が空間的サイズよりも大きい場合,盲点情報を漏洩する可能性がある。
論文 参考訳(メタデータ) (2024-04-11T15:39:10Z) - A Universal Deep Neural Network for Signal Detection in Wireless Communication Systems [35.07773969966621]
無線通信におけるチャネル推定と信号検出のための有望なアプローチとして,Deep Learning (DL) が登場している。
無線チャネルの動的性質に対処するためには、新しい非老化データに基づいてDL手法を再訓練する必要がある。
本稿では,モデルを再学習することなく,様々な無線環境において高い検出性能を達成できる,新しいユニバーサルディープニューラルネットワーク(Uni-DNN)を提案する。
論文 参考訳(メタデータ) (2024-04-03T11:21:10Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
ユーザ間の相互干渉のため、無線ネットワークにおける電力割り当て問題はしばしば自明ではない。
グラフグラフニューラルネットワーク(GNN)は、これらの問題に対処するための有望なアプローチとして最近登場し、無線ネットワークの基盤となるトポロジを活用するアプローチである。
論文 参考訳(メタデータ) (2023-03-27T10:59:09Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
決定フィードバック等化器(DFE)に似たフィードバック構造を持つSNNベースの等化器を提案する。
提案手法は,3種類の模範チャネルに対して,従来の線形等化器よりも明らかに優れていることを示す。
決定フィードバック構造を持つSNNは、競合エネルギー効率の良いトランシーバへのパスを可能にする。
論文 参考訳(メタデータ) (2022-11-09T09:19:15Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
チャネルのあらゆる変更に適応できるオンライントレーニングフレームワークを導入します。
我々のフレームワークは、非常にダイナミックなチャネル上での最近のニューラルネットワークモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-08-17T02:01:18Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Fairness-Oriented Semi-Chaotic Genetic Algorithm-Based Channel
Assignment Technique for Nodes Starvation Problem in Wireless Mesh Network [0.39146761527401425]
マルチ無線マルチチャネル無線メッシュネットワーク(WMN)は、IoT(Internet of Things)や車両ネットワークなど、多くの革新的な技術をサポートしている。
チャネル数の制限により、チャネル間の干渉はメッシュクライアント間の帯域幅の公平な分散に悪影響を及ぼす。
メッシュクライアントが利用可能なリソースを利用するためには、公平なチャネル割り当てが不可欠です。
論文 参考訳(メタデータ) (2020-06-17T04:43:47Z) - Decentralized Learning for Channel Allocation in IoT Networks over
Unlicensed Bandwidth as a Contextual Multi-player Multi-armed Bandit Game [134.88020946767404]
本稿では,プライマリセルネットワークにライセンスされたスペクトルに基づいて,アドホックなモノのインターネットネットワークにおける分散チャネル割り当て問題について検討する。
本研究では,この問題をコンテキスト型マルチプレイヤー・マルチアームバンディットゲームにマッピングし,試行錯誤による純粋に分散化された3段階ポリシー学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-30T10:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。