Quantifying quantum correlations in noisy Gaussian channels
- URL: http://arxiv.org/abs/2207.12821v1
- Date: Tue, 26 Jul 2022 11:34:35 GMT
- Title: Quantifying quantum correlations in noisy Gaussian channels
- Authors: Y. Lahlou, L. Baqmou, B. Maroufi and M. Daoud
- Abstract summary: We describe a scheme that aims to specify and examine the dynamic evolution of the quantum correlations in two-modes Gaussian states.
We show that the Gaussian interferometric power is a measurement quantifier that can capture the essential quantum correlations beyond quantum entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gaussian states are essential ingredients in many tasks of quantum
information processing. The presence of the noises imposes limitations on
achieving these quantum protocols. Therefore, examining the evolution of
quantum entanglement and quantum correlations under the coherence of Gaussian
states in noisy channels is of paramount importance. In this paper, we propose
and analyze a scheme that aims to specify and examine the dynamic evolution of
the quantum correlations in two-modes Gaussian states submitted to the
influence of the Gaussian thermal environment. We describe the time evolution
of the quantum correlations in an open system consisting of two coupled bosonic
modes embedded in a Gaussian thermal environment. We discuss the influence of
the environment in terms of the initial parameters of the input states. The
quantum correlations are quantified using Gaussian interferometric power and
the Gaussian entanglement of formation. The behavior of these quantum
correlations quantifiers is strictly dependent on the parameters of the input
states that are employed. We show that the Gaussian interferometric power is a
measurement quantifier that can capture the essential quantum correlations
beyond quantum entanglement. In addition, we show that the Gaussian
interferometric power is less influenced than the Gaussian entanglement of
formation.
Related papers
- Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantification of Quantum Correlations in Two-Beam Gaussian States Using
Photon-Number Measurements [0.0]
We implement a general method to quantify various forms of quantum correlations using solely the experimental intensity moments up to the fourth order.
This is possible as these moments allow for an exact determination of the global and marginal impurities of two-beam Gaussian fields.
arXiv Detail & Related papers (2022-09-12T17:28:22Z) - Flow of quantum correlations in noisy two-mode squeezed microwave states [0.0]
We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise.
We focus on two different types of correlations, namely, quantum entanglement and quantum discord.
arXiv Detail & Related papers (2022-07-13T09:59:52Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Experimental demonstration of robustness of Gaussian quantum coherence [5.522952775766461]
We experimentally quantify the quantum coherence of a squeezed state and a Gaussian Einstein-Podolsky-Rosen entangled state transmitted in a thermal noise channel.
Our results pave the way for application of Gaussian quantum coherence in lossy and noisy environments.
arXiv Detail & Related papers (2021-05-24T14:16:03Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Fisher information and skew information correlations in dipolar
spin system [1.5630592429258865]
Quantum Fisher information (QFI) and skew information (SI) plays a key role in the quantum resource theory.
We consider a pair ofspin-1/2 particles coupled with dipolar and Dzyaloshinsky-Moriya (DM) interactions, serving as the physical carrier of quantum information.
arXiv Detail & Related papers (2020-11-11T16:18:11Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.