Experimenting with Knowledge Distillation techniques for performing
Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2105.11486v1
- Date: Mon, 24 May 2021 18:17:01 GMT
- Title: Experimenting with Knowledge Distillation techniques for performing
Brain Tumor Segmentation
- Authors: Ashwin Nalwade, Jackie Kisa
- Abstract summary: Multi-modal magnetic resonance imaging (MRI) is a crucial method for analyzing the human brain.
With varying degrees of severity and detection, properly diagnosing gliomas is one of the most daunting and significant analysis tasks in modern-day medicine.
Our primary focus is on working with different approaches to perform the segmentation of brain tumors in multimodal MRI scans.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-modal magnetic resonance imaging (MRI) is a crucial method for
analyzing the human brain. It is usually used for diagnosing diseases and for
making valuable decisions regarding the treatments - for instance, checking for
gliomas in the human brain. With varying degrees of severity and detection,
properly diagnosing gliomas is one of the most daunting and significant
analysis tasks in modern-day medicine. Our primary focus is on working with
different approaches to perform the segmentation of brain tumors in multimodal
MRI scans. Now, the quantity, variability of the data used for training has
always been considered to be crucial for developing excellent models. Hence, we
also want to experiment with Knowledge Distillation techniques.
Related papers
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Diffusion MRI with Machine Learning [1.9798034349981164]
Diffusion-weighted magnetic resonance imaging (dMRI) offers unique capabilities.
Machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis.
arXiv Detail & Related papers (2024-01-01T13:03:35Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - Applications of Deep Learning Techniques for Automated Multiple
Sclerosis Detection Using Magnetic Resonance Imaging: A Review [11.505730390079645]
Multiple Sclerosis (MS) is a brain disease which causes visual, sensory, and motor problems for people with a detrimental effect on the functioning of the nervous system.
In recent years, computer aided diagnosis systems (CADS) based on artificial intelligence (AI) methods have been proposed for accurate diagnosis of MS using MRI neuroimaging modalities.
In this paper, a complete review of automated MS diagnosis methods performed using DL techniques with MRI neuroimaging modalities are discussed.
arXiv Detail & Related papers (2021-05-11T09:08:48Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
Manual segmentation of brain tumors from 3D MRI volumes is a time-consuming task.
Our model, QuickTumorNet, demonstrated fast, reliable, and accurate brain tumor segmentation.
arXiv Detail & Related papers (2020-12-22T23:16:43Z) - Multi-channel MRI Embedding: An EffectiveStrategy for Enhancement of
Human Brain WholeTumor Segmentation [2.869946954477617]
One of the most important tasks in medical image processing is the brain's whole tumor segmentation.
Brain tumors often can be malignant or benign, if they are detected at an early stage.
Our research introduces an efficient strategy called Multi-channel MRI embedding to improve the result of deep learning-based tumor segmentation.
arXiv Detail & Related papers (2020-09-13T23:44:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.