Diffusion MRI with Machine Learning
- URL: http://arxiv.org/abs/2402.00019v2
- Date: Fri, 26 Jul 2024 15:39:03 GMT
- Title: Diffusion MRI with Machine Learning
- Authors: Davood Karimi,
- Abstract summary: Diffusion-weighted magnetic resonance imaging (dMRI) offers unique capabilities.
Machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis.
- Score: 1.9798034349981164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion-weighted magnetic resonance imaging (dMRI) offers unique capabilities including noninvasive probing of brain's tissue microstructure and structural connectivity. It is widely used for clinical assessment of brain pathologies and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements often suffer from strong noise and artifacts, there is usually high inter-session and inter-scanner variability in the data, and considerable inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. These include deficient evaluation practices, lack of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
Related papers
- MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z) - Experimenting with Knowledge Distillation techniques for performing
Brain Tumor Segmentation [0.0]
Multi-modal magnetic resonance imaging (MRI) is a crucial method for analyzing the human brain.
With varying degrees of severity and detection, properly diagnosing gliomas is one of the most daunting and significant analysis tasks in modern-day medicine.
Our primary focus is on working with different approaches to perform the segmentation of brain tumors in multimodal MRI scans.
arXiv Detail & Related papers (2021-05-24T18:17:01Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
This work is to develop a system that automatically detects the presence of the disease in sagittal magnetic resonance images (MRI)
Although sagittal-plane MRIs are not commonly used, this work proved that they were, at least, as effective as MRI from other planes at identifying AD in early stages.
This study proved that DL models could be built in these fields, whereas TL is an essential tool for completing the task with fewer examples.
arXiv Detail & Related papers (2021-05-18T11:37:57Z) - Incorporating structured assumptions with probabilistic graphical models
in fMRI data analysis [5.23143327587266]
We review a few recently developed algorithms in various domains of fMRI research.
These algorithms all tackle the challenges in fMRI similarly.
We advocate wider adoption of explicit model construction in cognitive neuroscience.
arXiv Detail & Related papers (2020-05-11T06:32:54Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
We introduce a novel machine learning method which allows combining the activation-and connectivity-based information respectively measured through task-fMRI and resting-state fMRI.
It combines a multi-view deep autoencoder which is designed to fuse the two fMRI modalities into a joint representation space within which a predictive model is trained to guess a scalar score that characterizes the patient.
arXiv Detail & Related papers (2020-04-01T09:01:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.