Elastic Shape Analysis of Brain Structures for Predictive Modeling of
PTSD
- URL: http://arxiv.org/abs/2105.11547v1
- Date: Mon, 24 May 2021 21:33:58 GMT
- Title: Elastic Shape Analysis of Brain Structures for Predictive Modeling of
PTSD
- Authors: Yuexuan Wu, Suprateek Kundu, Jennifer S. Stevens, Negar Fani, Anuj
Srivastava
- Abstract summary: We propose a comprehensive framework that overcomes limitations by representing brain substructures as continuous parameterized surfaces.
Using the elastic shape metric, we compute shape summaries of subcortical data and represent individual shapes by their principal scores.
We apply our method to data from the Grady Trauma Project, where the goal is to predict clinical measures of PTSD using shapes of brain substructures.
- Score: 9.922132565411664
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is increasing evidence on the importance of brain morphology in
predicting and classifying mental disorders. However, the vast majority of
current shape approaches rely heavily on vertex-wise analysis that may not
successfully capture complexities of subcortical structures. Additionally, the
past works do not include interactions between these structures and exposure
factors. Predictive modeling with such interactions is of paramount interest in
heterogeneous mental disorders such as PTSD, where trauma exposure interacts
with brain shape changes to influence behavior. We propose a comprehensive
framework that overcomes these limitations by representing brain substructures
as continuous parameterized surfaces and quantifying their shape differences
using elastic shape metrics. Using the elastic shape metric, we compute shape
summaries of subcortical data and represent individual shapes by their
principal scores. These representations allow visualization tools that help
localize changes when these PCs are varied. Subsequently, these PCs, the
auxiliary exposure variables, and their interactions are used for regression
modeling. We apply our method to data from the Grady Trauma Project, where the
goal is to predict clinical measures of PTSD using shapes of brain
substructures. Our analysis revealed considerably greater predictive power
under the elastic shape analysis than widely used approaches such as
vertex-wise shape analysis and even volumetric analysis. It helped identify
local deformations in brain shapes related to change in PTSD severity. To our
knowledge, this is one of the first brain shape analysis approaches that can
seamlessly integrate the pre-processing steps under one umbrella for improved
accuracy and are naturally able to account for interactions between brain shape
and additional covariates to yield superior predictive performance when
modeling clinical outcomes.
Related papers
- Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
We explore high-dimensional problems related to physiological monitoring using latent variable models.
First, we present a novel deep state-space model to generate electrical waveforms of the heart using optically obtained signals as inputs.
Second, we present a brain signal modeling scheme that combines the strengths of probabilistic graphical models and deep adversarial learning.
Third, we propose a framework for the joint modeling of physiological measures and behavior.
arXiv Detail & Related papers (2024-05-29T17:07:33Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
Reconstructing the viewed images from human brain activity bridges human and computer vision through the Brain-Computer Interface.
We devise Psychometry, an omnifit model for reconstructing images from functional Magnetic Resonance Imaging (fMRI) obtained from different subjects.
arXiv Detail & Related papers (2024-03-29T07:16:34Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - Statistical Shape Modeling of Biventricular Anatomy with Shared
Boundaries [16.287876512923084]
This paper presents a general and flexible data-driven approach for building statistical shape models of multi-organ anatomies with shared boundaries.
Shape changes within these shared boundaries of the heart can indicate potential pathological changes that lead to uncoordinated contraction and poor end-organ perfusion.
arXiv Detail & Related papers (2022-09-06T15:54:37Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
We propose a potential solution by first learning a structural-to-functional transformation in brain MRI.
We then synthesize spatially matched functional images from large-scale structural scans.
We identify the temporal lobe to be the most predictive structural-region and the parieto-occipital lobe to be the most predictive functional-region of our model.
arXiv Detail & Related papers (2021-04-10T03:16:33Z) - Discriminative and Generative Models for Anatomical Shape Analysison
Point Clouds with Deep Neural Networks [3.7814216736076434]
We introduce deep neural networks for the analysis of anatomical shapes that learn a low-dimensional shape representation from the given task.
Our framework is modular and consists of several computing blocks that perform fundamental shape processing tasks.
We propose a discriminative model for disease classification and age regression, as well as a generative model for the accruate reconstruction of shapes.
arXiv Detail & Related papers (2020-10-02T07:37:40Z) - Benchmarking off-the-shelf statistical shape modeling tools in clinical
applications [53.47202621511081]
We systematically assess the outcome of widely used, state-of-the-art SSM tools.
We propose validation frameworks for anatomical landmark/measurement inference and lesion screening.
ShapeWorks and Deformetrica shape models are found to capture clinically relevant population-level variability.
arXiv Detail & Related papers (2020-09-07T03:51:35Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
We show that fMRI datasets are constituted by complex and highly heterogeneous timeseries.
We compare various modelling techniques from deep learning and geometric deep learning to pave the way for future research.
We hope that our methodological advances can ultimately be clinically and computationally relevant by leading to a more nuanced understanding of the brain dynamics in health and disease.
arXiv Detail & Related papers (2020-02-29T18:49:45Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.